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a b s t r a c t

We introduce a parametric finite element approximation for the Stefan problem with the
Gibbs–Thomson law and kinetic undercooling, which mimics the underlying energy struc-
ture of the problem. The proposed method is also applicable to certain quasi-stationary
variants, such as the Mullins–Sekerka problem. In addition, fully anisotropic energies are
easily handled. The approximation has good mesh properties, leading to a well-conditioned
discretization, even in three space dimensions. Several numerical computations, including
for dendritic growth and for snow crystal growth, are presented.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Pattern formation resulting from the motion of a two-phase boundary in a diffusing field appears in many physical sit-
uations, such as the growth of snowflakes, solidification of metals and Ostwald ripening in alloys. Often a dendritic structure
appears during the growth of crystals leading to complex forms with side branches, as can be seen for snow crystals and for
dendrites of a solidifying alloy. It is by now well understood that surface energy effects are important in these pattern form-
ing scenarios. Roughly speaking, patterns emerge in diffusive driven phase boundary motion via the competition between
interface energy and diffusion. To keep the interface energy small, the (weighted) surface area has to be small. On the other
hand, the diffusion kinetics prefer to drive the system into irregular shapes with large surface area so that, e.g. in solidifica-
tion, latent heat can diffuse away from the solidifying front more easily. We refer to the review [15], the book [20] and the
references therein for more information on the physics of pattern formation in diffusive systems.

Patterns arise in diffusive phase boundary motion since a growing front becomes unstable. A meaningful attempt to
numerically approximate these phenomena should make sure that the numerical method used does not lead to additional
instabilities, and hence to patterns which result from the discretization. It is by now well accepted that some of the first
numerical results on pattern forming systems led to patterns which resulted from numerical errors. For example, often side
branches in dendritic growth simulations disappear when the grid parameters are sufficiently refined, see e.g. [51, Fig. 4.5].
. All rights reserved.
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Taking the unstable behaviour of the process into account, it is important to come up with a numerical method that is stable
in the sense that dissipation inequalities which are true for the continuous problem have a natural discrete analogue. If this is
guaranteed, one reduces the likelihood that instabilities are triggered by the numerical method.

It is the goal of this paper to introduce such a discretization for the free boundary problem which governs the evolution of
phase boundary motion in diffusive systems. For dendritic growth it is also important to take the anisotropic nature of sur-
face energy into account. Based on earlier work by the authors, see [9], our presented numerical method is able to handle
fully anisotropic situations, which is particularly challenging as here the underlying equations are highly nonlinear.

The governing equations for the two-phase boundary motion, that we consider, are diffusion equations in the bulk cou-
pled to the Stefan condition on the free boundary, which requires heat conservation on the phase boundary. In addition, one
requires a condition stating local thermodynamical equilibrium on the two-phase interface. This condition is given by the
Gibbs–Thomson relation with kinetic undercooling in which, typically, one has to allow for anisotropy. The full problem, that
we consider, goes back to [45] and [60], the latter being the translation of [59]. We note that for a fully anisotropic situation,
Gurtin derived the governing system within the context of rational thermodynamics in [34]. For reviews we refer to
[39,35,58,20]. An important result on the Stefan problem with the Gibbs–Thomson law is the seminal work [45] and [46],
where a linear stability analysis was used to show that a growing nucleus and a moving planar front, respectively, become
unstable at large undercoolings. It is this instability which is the basic reason for pattern formation in diffusion driven inter-
face motion, in situations where capillary effects cannot be neglected. Snow crystal formation is the most prominent exam-
ple for such a pattern forming event.

Existence results for the Stefan problem with the Gibbs–Thomson law are were derived in [19] for local-in-time smooth
solutions, and in [41] for global-in-time weak solutions. Both results are for isotropic situations, but we mention here that
the result in [41] was recently generalized in [31] to anisotropic situations. In many situations the interface evolution is slow
compared to the time scale for diffusion in the bulk. Hence, it is often justified to replace the full parabolic diffusion equation
in the bulk by a quasi-static diffusion equation, i.e. an elliptic equation has to be solved at each instance in time. The resulting
system is the Mullins–Sekerka problem, and we refer to [24,27] for a local well-posedness result, and to [42,48] for results on
global-in-time weak solutions.

Mathematical approaches for the numerical approximation of the Stefan problem can be distinguished according to how
the two-phase interface is treated. Apart from parametric or front-tracking approaches, such as the one considered in this
paper, there exist phase field and level set methods. We remark that over the last two decades phase field methods, in par-
ticular, have been successfully used to model crystal growth and other related phenomena. In phase field methods the sharp
interface is replaced by a diffuse interfacial layer for an order parameter. For the numerical simulation of dendritic growth in
three dimensions, this method was first used in [38]. We refer to [16,18,55] for recent review articles. A similar idea is used
for level set methods. Here the sharp interface is represented as the zero level set of an auxiliary function, the so called level
set function, the evolution of which is described by a highly nonlinear PDE, which can be solved on e.g. a fixed Cartesian grid.
We refer to the books [54,47] and the paper [29] for more details.

In this paper we will consider a parametric approach. Alternative sharp interface approaches for the Stefan problem with
the Gibbs–Thomson law, where the interface is tracked explicitly, have been used and proposed in e.g. [1,50,49,51,37,52]. We
mention here, in particular, the pioneering work [50,51], where for the first time the full Stefan problem in three dimensions
was solved within a sharp interface framework. Together with [38], these constitute the first numerical simulations of den-
dritic growth in 3d in the literature. We remark that our approach has some similarities to the approach by Schmidt, which is
based on the coupling of a finite element method for solving the diffusion equation in the bulk to a parametric finite element
method for the evolution of the two-phase interface. The latter makes use of ideas in [25], which allow the computation of a
discrete mean curvature vector of a polyhedral surface in a variational context. Compared to [51] our approach has the
advantages that (a) fully anisotropic surface energies can be treated, (b) it mimics the Lyapunov structure for the continuous
problem in both the isotropic and anisotropic case, and (c) no smoothing of the interface mesh is needed in practice. In addi-
tion, we can also handle quasi-static variants, such as the Mullins–Sekerka problem, which play an important role in practice.

For numerical approaches to the Mullins–Sekerka problem we refer to [14,62,44,13], where the approximations are based
on a boundary integral formulation. In the paper [62] a method, which was introduced in [36] for the equidistribution of
mesh points on evolving planar curves, is used in order to remove the ‘‘stiffness’’ introduced through the curvature term.
We remark that our approach also removes the ‘‘stiffness’’ of interfacial evolution problems as our method has very good
properties with respect to the grid spacing, leading to a well-conditioned discretization. We refer to [6,8] for a discussion
of mesh properties in our approach; and remark that, in contrast to the approach of [36], our approach can also be applied
in three space dimensions.

Let us summarize the advantages of our approximation compared to existing approaches:

� Our fully discrete scheme closely mimics an underlying Lyapunov structure of the continuous problem, leading to an
unconditionally stable approximation in certain situations. Moreover, a semidiscrete version of our scheme is always sta-
ble and, in addition, conserves certain physical quantities exactly; see Remark 3.5 below.
� Like most other parametric approaches, we approximate the continuous interface C by a polyhedral surface Cm. Often in

parametric approaches the mesh gets distorted during the time evolution, making a reparameterization or mesh smooth-
ing necessary. Instead, we obtain asymptotic equidistribution in two space dimensions, while in 3d the meshes in general
remain well distributed. This, in particular, leads to a well-conditioned discretization.
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� It is straightforward to include fully anisotropic surface energies into our model, for both two and three space dimensions.
In particular, we consider the Gibbs–Thomson law with an anisotropic mean curvature, as it was derived in [34].
� The cross terms involving the bulk and interface meshes are integrated exactly. This appears sensible, as it is the inter-

action at the interface which mainly drives the evolution. Most other approaches in the literature use quadrature for sim-
plicity, see e.g. [51], which, in particular, are not exact even for piecewise linear functions in the bulk. However, we
remark that exact integration for piecewise linear finite elements has been considered previously, e.g. in [50].
� Quasi-static variants of the Stefan problem, such as the Mullins–Sekerka problem, can be handled naturally in our formu-

lation. For the Mullins–Sekerka problem our numerical discretization has a natural gradient flow structure, which is
related to the continuous situation; see the Appendix A for more details.

The remainder of the paper is organized as follows. In Section 2 we state strong and weak formulations of the Stefan prob-
lem and the Mullins–Sekerka problem that we consider in this paper. In Section 3 we introduce our numerical approximation
for these problems; that is, a coupled finite element approximation for the interface evolution and the diffusion equation in
the bulk. Moreover, we will show well-posedness and stability results for our numerical approximations. Solution methods
for the discrete equations and mesh adaptation strategies are discussed in Sections 4 and 5, respectively. In addition, we
present several numerical experiments, including simulations of snow crystal formations in three space dimensions, in Sec-
tion 6. Finally, in the Appendix A we present a gradient flow description of our spatially discrete approximation for the Mul-
lins–Sekerka problem.

2. The mathematical models

Let X � Rd; d ¼ 2;3, be a domain occupied by a material which at each time t and at each space point~z 2 X is either liquid
or solid and let~mX be the outer unit normal to oX, the boundary of X. The solid–liquid interface is at each time t assumed to
be a sufficiently smooth hypersurface CðtÞ � X. We assume furthermore that C ¼ ðCðtÞÞt2½0;T�; T > 0, is a sufficiently smooth
evolving hypersurface parameterized by~xð�; tÞ : !! Rd, where ! � Rd is a given reference manifold, i.e. CðtÞ ¼~xð!; tÞ. More-
over, we denote the solid region by Xs(t) and the liquid region is then given as XlðtÞ :¼ X nXsðtÞ. Throughout this paper, for a
quantity v defined on X, we use the shorthand notations v s :¼ v jXs

and v l :¼ v jXl
. For the interface C, we adopt the conven-

tion that its unit normal~m points into Xl; see Fig. 1. The mean curvature , of C is defined to be the sum of the principal cur-
vatures of C and we adopt the sign convention that , is negative for a convex domain Xs(t). Furthermore, V :¼~xt . ~m is the
normal velocity of the evolving hypersurface C.

2.1. Strong formulation of the Stefan problem

The Stefan problem with the Gibbs–Thomson law and kinetic undercooling in its anisotropic version is now given as fol-
lows. Find u : X� ½0; T� ! R and the interface ðCðtÞÞt2½0;T� such that for all t 2 ð0; T� the following conditions hold:
#ut �Ks Du ¼ fs in XsðtÞ; #ut �Kl Du ¼ fl in XlðtÞ; ð2:1aÞ

K ou
o~m

� �
CðtÞ
¼ �kV on CðtÞ; ð2:1bÞ

qV
bð~mÞ ¼ a,c � au on CðtÞ; ð2:1cÞ

ou
o~mX
¼ 0 on oNX; u ¼ uD on oDX; ð2:1dÞ

Cð0Þ ¼ C0; #uð�;0Þ ¼ #u0 in X; ð2:1eÞ
where ½K ou
o~m �CðtÞð~zÞ :¼ ðKl

oul
o~m �Ks

ous
o~m Þð~zÞ for all ~z 2 CðtÞ and oX ¼ oNX [ oDX with oNX \ oDX = ;. In addition, C0 � X and

u0 : X! R are given initial data.
In the above f describes heat sources and u = T � TM denotes the deviation from the melting temperature, i.e. TM is the

melting temperature for a planar interface and T is the absolute temperature in Kelvin. By # we denote the volumetric heat
capacity, and K is the heat conductivity. Here # is assumed to be constant in X, while K is assumed to be constant in each
phase. Moreover, k is the latent heat per unit volume, a is an interfacial energy density per surface area, q is a kinetic coef-
ficient and a is a coefficient having the dimension entropy/volume. All of the above parameters are assumed to be non-neg-
ative and we will always assume that K; a and k are strictly positive. The quantity ,c is an anisotropic mean curvature which
will be specified later. We only remark that in the isotropic case ,c reduces to the mean curvature ,. In addition, bð~mÞ is a
dimensionless mobility function which allows one to describe the dependence of the mobility on the local orientation of the
interface.

The model (2.1a)–(2.1e) can be derived for example within the theory of rational thermodynamics and we refer to [34] for
details. We remark that a derivation from thermodynamics would lead to the identity:
a ¼ k
TM

: ð2:2Þ



Fig. 1. The domain X in the case d = 2.
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We note that (2.1b) is the well-known Stefan condition, while (2.1c) is the Gibbs–Thomson condition, with kinetic und-
ercooling if q > 0. The case # > 0, q > 0, a > 0 leads to the Stefan problem with the Gibbs–Thomson law and kinetic underco-
oling. In some models in the literature, see e.g. [41], the kinetic undercooling is set to zero, i.e. q = 0. Setting # = q = 0 but
keeping a > 0 leads to the Mullins–Sekerka problem with the Gibbs–Thomson law, see [45]. In situations where the interface
C(t) meets the external boundary oX, an angle condition needs to be prescribed. We will discuss this issue in more detail in
the section on the numerical discretization. We remark that the problem (2.1a)–(2.1e) also appears in solidification from a
supersaturated solution, and in this case the problem (2.1a)–(2.1e) includes conservation equations for a concentration, see
[15] or [20] for details. This situation is relevant e.g. for the snow crystal simulations in Section 6.

We note that in addition we could consider e.g. the classical Stefan problem (# > 0, q = a = 0) and its quasi-static variant
(# = q = a = 0). However, as these problems do not involve curvature, as a = 0, they can be easily solved with well established
numerical methods such as the enthalpy method and the variational inequality approach after applying the Baiocchi trans-
form, respectively; see e.g. [26]. Hence throughout this paper, we assume that a > 0, so that the problem (2.1a)–(2.1e) cou-
ples u, C(t) and ,c.

It now remains to introduce the anisotropic mean curvature ,c. One obtains ,c as the first variation of an anisotropic
interface free energy:
jCjc :¼
Z

C
cð~mÞ ds;
where c : Rd ! RP0, with cð~pÞ > 0 if ~p–~0, is the surface free energy density which depends on the local orientation of the
surface via the normal ~m. The function c is assumed to be positively homogeneous of degree one, i.e.
cðb~pÞ ¼ bcð~pÞ 8 ~p 2 Rd; 8b > 0) c0ð~pÞ:~p ¼ cð~pÞ 8~p 2 Rd n f~0g;
where c
0

is the gradient of c. In the isotropic case we have that:
cð~pÞ ¼ j~pj 8~p 2 Rd; ð2:3Þ
and so cð~mÞ ¼ 1, which means that jCjc reduces to jCj, the surface area of C. The first variation of jCjc is given by, see e.g. [9]:
,c :¼ �rs:c0ð~mÞ;
where rs. is the tangential divergence of C, i.e. we have in particular that:
d
dt
jCðtÞjc ¼

d
dt

Z
CðtÞ

cð~mÞ ds ¼ �
Z

CðtÞ
,cV ds:
A wide class of anisotropies can be modelled by
cð~pÞ ¼
XL

‘¼1

c‘ð~pÞ½ �r
 !1

r

; c‘ð~pÞ :¼ ~p � G‘~p½ �
1
2; ð2:4Þ
so that:
c0ð~pÞ ¼ ½cð~pÞ�1�r
XL

‘¼1

c‘ð~pÞ½ �r�1 c0‘ð~pÞ;
where r 2 [1,1) and G‘ 2 Rd�d; ‘ ¼ 1! L, are symmetric and positive definite. Our numerical method will be based on aniso-
tropies of the form (2.4). This novel choice of anisotropy was first considered in [7] and [9], and there it enabled the authors
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to introduce unconditionally stable fully discrete finite element approximations for the anisotropic mean curvature flow, i.e.
(2.1c) with a = 0, and other geometric evolution equations for an evolving interface C. Similarly, in this paper, the choice of
anisotropies (2.4) will lead to fully discrete approximations of (2.1a)–(2.1e) with very good stability properties. We note that
the simpler choice r = 1, which leads to a finite element approximation with a linear system to solve at each time level, see
(3.5a)–(3.5c) below, is sufficient for the case d = 2. But in three space dimensions, the choice r = 1 leads to only a relatively
small class of anisotropies, which is why the authors introduced the more general (2.4) in [9].

We now give some examples for anisotropies of the form (2.4), which later on will be used for the numerical simulations
in this paper. For the visualizations we will use the Wulff shape, [61], defined by
W :¼ f~p 2 Rd :~p �~q 6 cð~qÞ 8 ~q 2 Rdg: ð2:5Þ
Here we recall that the Wulff shapeW is known to be the solution of an isoperimetric problem, i.e. the boundary ofW is
the minimizer of j � jc in the class of all surfaces enclosing the same volume, see e.g. [28].

Let:
l1e ð~pÞ :¼
Xd

j¼1

e2 j~pj2 þ p2
j ð1� e2Þ

h i1
2

and l2
e ð~pÞ :¼ j~pj2 � ð1� e2Þp2

d

h i1
2
; e > 0;
be a regularized l1-norm and a regularized (d � 1)-dimensional l2-norm, respectively. Then cð~pÞ ¼ l1
e ð~pÞ and, for d ¼ 2; cð~pÞ ¼

l1
e ðRðp2Þ~pÞ, where R(h) denotes a clockwise rotation through the angle h, are two examples for (2.4), and their Wulff shapes for

e = 0.5 and e = 0.4, respectively, are shown in Fig. 2. A hexagonal anisotropy in R2 can be modelled with the choice

cð~pÞ ¼
P3

‘¼1l2
e ðRð‘p3 Þ~pÞ, and its Wulff shape for e = 0.01 is shown on the right of Fig. 2.

In order to define some anisotropies of the form (2.4) in R3, we introduce the rotation matrices R1ðhÞ :¼
cos h sin h 0
� sin h cos h 0

0 0 1

0@ 1A and R2ðhÞ :¼
cos h 0 sin h

0 1 0
� sin h 0 cos h

0@ 1A. Then cð~pÞ ¼
P3

‘¼1l2
e ðR1ð‘p3 Þ~pÞ þ l2

e ðR2ðp2Þ~pÞ is one such example, and

its Wulff shape for e = 0.1 is shown in Fig. 3. Finally, the Wulff shape of
c ~pð Þ ¼ l2
e ~pð Þ
h ir

þ l2
e R1

p
2

� �
~p

� �h ir
þ l2

e R2
p
2

� �
~p

� �h ir
� �1

r

; ð2:6Þ
for r = 9 and e = 0.5 is shown on the right of Fig. 3. We remark that for smaller values of e and larger values of r, the Wulff
shape of (2.6) will approach an octahedron, as can be seen in [9, Fig. 4]. However, for the problems considered in this paper,
even a mild anisotropy as depicted in Fig. 3 already leads to very pronounced dendritic growth; see e.g. Section 6.5 below.
More examples of anisotropies of the form (2.4) can be found in [7,9,11].

2.2. Weak formulation of the Stefan problem

For later reference, we introduce the function spaces:
S0 :¼ f/ 2 H1ðXÞ : / ¼ 0 on oDXg and SD :¼ f/ 2 H1ðXÞ : / ¼ uD on oDXg;
Fig. 2. Wulff shapes for different choices of (2.4) in R2. Here L = 2, 2, 3 and e = 0.5, 0.4, 0.01.

Fig. 3. Wulff shapes for different choices of (2.4) in R3. Here L = 4, r = 1 and e = 0.1 (left); and L = 3, r = 9 and e = 0.5 (right).



J.W. Barrett et al. / Journal of Computational Physics 229 (2010) 6270–6299 6275
where we assume for simplicity of the presentation from now on that either:
ðiÞ oX ¼ oDX; or ðiiÞ oX ¼ oNX; or ðiiiÞ X ¼ ð�H;HÞd; oDX ¼ ½�H;H�d�1 � fHg; H > 0; ð2:7Þ
and, in the cases (2.7)(i) and (iii), that uD 2 H
1
2ðoDXÞ. For notational convenience, we define uD :¼ 0 in the case (2.7)(ii). In

addition, we define:
V :¼ H1ð!;RdÞ and W :¼ H1ð!;RÞ;
where we recall that ! is a given reference manifold. A possible weak formulation of (2.1a)–(2.1e), which utilizes the novel
weak representation of ,c~m introduced in [9], is then given as follows. Find time dependent functions u;~x and ,c such that
uð�; tÞ 2 SD;~xð�; tÞ 2 V ;,cð�; tÞ 2W and
# ðut ;/Þ þ ðKru;r/Þ � ðf ;/Þ ¼ �
Z

CðtÞ
K ou

o~m

� �
CðtÞ

/ ds ¼ k
Z

CðtÞ
~xt �~m/ ds; 8/ 2 S0; ð2:8aÞ

q
Z

CðtÞ

~xt �~mv
bð~mÞ ds ¼

Z
CðtÞ

a,c � au
� 	

v ds 8v 2W; ð2:8bÞZ
CðtÞ

,c~m �~g dsþ reGs ~x;reGs ~gD E
c
¼ 0 8~g 2 V ð2:8cÞ
hold for almost all times t 2 ð0; T�, as well as the initial conditions (2.1e). Here (�,�) denotes the L2-inner product on X. Note
that in (2.8a)–(2.8c) for convenience we have adopted a slight abuse of notation. Here and throughout this paper we will
identify functions defined on the reference manifold ! with functions defined on C(t). In particular, we identify v 2W with
v �~x�1 on C(t), where we recall that CðtÞ ¼~xð!; tÞ, and we denote both function simply as v. For example,~x 	 ~id is also the

identity function on C(t). In addition, we have introduced the shorthand notation hreGs �;reGs � ic for the inner product defined
in [9]. In particular, we define the symmetric positive definite matrices eG‘ with the associated inner products ð�; �ÞeG‘

on Rd by
eG‘ :¼ det G‘½ �
1
2 ½G‘��1 and ð~v ; ~wÞeG‘

¼ ~v � eG‘ ~w 8 ~v; ~w 2 Rd; ‘ ¼ 1! L:
Then we have that:
reGs ~v;reGs ~gD E
c

:¼
XL

‘¼1

Z
CðtÞ

c‘ð~mÞ
cð~mÞ

� �r�1

reG‘

s
~v;reG‘

s ~g
� �eG‘

c‘ð~mÞ ds; ð2:9Þ
where
reG‘

s ~g;reG‘

s
~v

� �eG‘

:¼
Xd�1

j¼1

o~tð‘Þ
j

~g; o~tð‘Þ
j

~v
� �

eG‘
with f~tð‘Þ1 ; . . . ;~tð‘Þd�1g being an orthonormal basis with respect to the eG‘ inner product for the tangent space of C(t); see [9] for
further details. We remark that (2.9) for an isotropic surface energy (2.3) collapses to:
reGs ~v;reGs ~gD E
c
¼ rs~v;rs~g

 �

:¼
Z

CðtÞ
rs~v � rs~g ds: ð2:10Þ
Moreover, we observe that (2.8b), (2.8c) with a = 0 collapses to the weak formulation for anisotropic mean curvature flow
introduced in [9].

Assuming for simplicity that uD is constant, we can establish the following a priori bound. Choosing / = u � uD in (2.8a),
v ¼ k

a
~xt:~m in (2.8b) and ~g ¼ a k

a
~xt in (2.8c) we obtain, on using the identities:
d
dt

volðXsðtÞÞ ¼
Z

CðtÞ
~xt �~m ds ¼

Z
CðtÞ
V ds; ð2:11Þ
see e.g. [23], and
d
dt
jCðtÞjc ¼

d
dt

Z
CðtÞ

cð~mÞ ds ¼ reGs ~x;reGs ~xt

D E
c
; ð2:12Þ
see [9], that:
d
dt

#

2
ju� uDj2X þ

ak
a
jCðtÞjc þ kuD volðXsðtÞÞ

� �
þ ðKru;ruÞ þ kq

a

Z
CðtÞ

V2

bð~mÞ ds ¼ ðf ;u� uDÞ; ð2:13Þ
where j � jX denotes the L2-norm on X. Of course, in the case of no-flux Neumann boundary conditions with oNX = oX, we
obtain (2.13) with uD = 0.

In addition, in the case of no-flux Neumann boundary conditions with oNX = oX, and f 	 0, we have the conservation law:
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d
dt

# ðu;1Þ � kvol XsðtÞð Þ½ � ¼ # ðut;1Þ � k
Z

CðtÞ
~xt �~m ds ¼ 0: ð2:14Þ
These identities follow by integration of (2.1a) using integration by parts, (2.1b), (2.11) and the zero Neumann boundary
conditions.

All of the considerations in this section remain valid for the case # = q = 0. In particular, (2.1a)–(2.1e) with # = q = 0 is the
strong formulation of the Mullins–Sekerka problem, while (2.8a)–(2.8c) with # = q = 0 is the corresponding weak formulation.

3. Finite element approximation

Let 0 ¼ t0 < t1 < � � � < tM�1 < tM ¼ T be a partitioning of ½0; T� into possibly variable time steps sm :¼ tm+1 � tm,
m = 0 ? M � 1. We set s :¼maxm=0?M�1sm. First we introduce standard finite element spaces of piecewise linear functions
on X.

Let X be a polyhedral domain. For m P 0, let T m be a regular partitioning of X into disjoint open simplices, so that
X ¼ [om2T m om. Let Jm

X be the number of elements in T m, so that T m ¼ fom
l : l ¼ 1! Jm

Xg. Associated with T m is the finite ele-
ment space:
Sm :¼ fv 2 CðXÞ : vjom is linear 8 om 2 T mg � H1ðXÞ: ð3:1Þ
Let Km
X be the number of nodes of T m and let f~pm

j g
Km

X
j¼1 be the coordinates of these nodes. Let f/m

j g
Km

X
j¼1 be the standard basis

functions for Sm. We introduce Im : CðXÞ ! Sm, the interpolation operator, such that ðImgÞð~pm
k Þ ¼ gð~pm

k Þ for k ¼ 1! Km
X . A dis-

crete semi-inner product on CðXÞ is then defined by
ðg1;g2Þ
h
m :¼ ðIm g1 g2½ �;1Þ;
with the induced semi-norm given by jgjX;m :¼ ½ðg;gÞhm�
1
2 for g 2 CðXÞ.

The test and trial spaces for our finite element approximation of the bulk Eq. (2.8a) are then defined by
Sm
0 :¼ fv 2 Sm : v ¼ 0 on oDXg and Sm

D :¼ fv 2 Sm : v ¼ ImuD on oDXg; ð3:2Þ
where in the definition of Sm
D we allow for uD 2 H

1
2ðoXÞ \ CðoXÞ.

The parametric finite element spaces in order to approximate~x and ,c in (2.8a)–(2.8c), are defined as follows. Similarly to
[8], we introduce the following discrete spaces, based on the seminal paper [25]. Let Cm � Rd be a (d � 1)-dimensional poly-
hedral surface, i.e. a union of non-degenerate (d � 1)-simplices with no hanging vertices (see [23, p. 164] for d = 3), approx-

imating the closed surface C(tm), m = 0 ? M. In particular, let Cm ¼
SJm

C
j¼1rm

j , where frm
j g

Jm
C

j¼1 is a family of mutually disjoint

open (d � 1)-simplices with vertices f~qm
k g

Km
C

k¼1. Then for m = 0 ? M � 1, let:
VðCmÞ :¼ f~v 2 CðCm;RdÞ : ~vjrm
j

is linear 8 j ¼ 1! Jm
C g ¼: ½WðCmÞ�d � H1ðCm;RdÞ;
where WðCmÞ � H1ðCm;RÞ is the space of scalar continuous piecewise linear functions on Cm, with fvm
k g

Km
C

k¼1 denoting the
standard basis of W(Cm). For later purposes, we also introduce pm : CðCm;RÞ !WðCmÞ, the standard interpolation operator

at the nodes f~qm
k g

Km
C

k¼1, and similarly ~pm : CðCm;RdÞ ! VðCmÞ. Throughout this paper, we will parameterize the new closed sur-

face Cm+1 over Cm, with the help of a parameterization ~Xmþ1 2 VðCmÞ, i.e. Cmþ1 ¼ ~Xmþ1ðCmÞ. Moreover, for m P 0, we will of-

ten identify ~Xm with ~id 2 VðCmÞ, the identity function on Cm.
For scalar and vector functions v ;w 2 L2ðCm;RðdÞÞ we introduce the L2 inner product h � , � im over the current polyhedral

surface Cm as follows:
hv ;wim :¼
Z

Cm
v �w ds:
Here and throughout this paper, �(*) denotes an expression with or without the superscript 
, and similarly for subscripts.
If v,w are piecewise continuous, with possible jumps across the edges of frm

j g
Jm
C

j¼1, we introduce the mass lumped inner prod-
uct h�; �ihm as
hv ;wihm :¼ 1
d

XJm
C

j¼1

jrm
j j
Xd

k¼1

ðv �wÞ ð~qm
jk
Þ�

� �
; ð3:3Þ
where f~qm
jk
gd

k¼1 are the vertices of rm
j , and where we define vðð~qm

jk
Þ�Þ :¼ limrm

j
3~p!~qm

jk
vð~pÞ. Here jrm

j j ¼
1

ðd�1Þ! jð~qm
j2
�~qm

j1
Þ ^ � � � ^ ð~qm

jd
�~qm

j1
Þj is the measure of rm

j , where ^ is the standard wedge product on Rd.

In addition, we introduce the unit normal ~mm to Cm; that is:
~mm
j :¼~mmjrm

j
:¼

~qm
j2
�~qm

j1

� �
^ � � � ^ ~qm

jd
�~qm

j1

� �
~qm

j2
�~qm

j1

� �
^ � � � ^ ~qm

jd
�~qm

j1

� ���� ��� ;
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where we have assumed that the vertices f~qm
jk
gd

k¼1 of rm
j are ordered such that ~mm : Cm ! Rd induces an orientation on Cm.

Finally, we set j � j2mð;hÞ :¼ h�; �iðhÞm .
Before we can introduce our approximation to (2.8a)–(2.8c), we have to introduce the notion of a vertex normal on Cm.

We will combine this definition with a natural assumption that is needed in order to show existence and uniqueness, where
applicable, for the introduced finite element approximation.

ðAÞ We assume for m = 0 ? M � 1 that jrm
j j > 0 for all j ¼ 1! Jm

C , and that Cm � X. For k ¼ 1! Km
C , let

Nm
k :¼ frm

j :~qm
k 2 rm

j g and set:
Km
k :¼ [rm

j
2Nm

k
rm

j and ~xm
k :¼ 1

jKm
k j

X
rm

j
2Nm

k

jrm
j j ~mm

j :
Then we further assume that ~xm
k –~0; k ¼ 1! Km

C , and that dim spanf~xm
k g

Km
C

k¼1 ¼ d;m ¼ 0! M � 1.

Given the above definitions, we also introduce the piecewise linear vertex normal function:
~xm :¼
XKm

C

k¼1

vm
k
~xm

k 2 VðCmÞ;
and remark that thus:
h~v ;w~mmihm ¼ h~v ;w~xmihm 8~v 2 VðCmÞ; w 2WðCmÞ: ð3:4Þ
Remark 3.1. We note that one can interpret ~xm
k as a weighted normal defined at the node ~qm

k of Cm, where in general
j~xm

k j < 1. In addition, we note that ðAÞ is only violated in very rare occasions. For example, it always holds for surfaces
without self intersections. For more details in the case d = 2, we refer to [6].

We consider the following fully practical finite element approximation of (2.8a)–(2.8c). Let C0 and, if # > 0;U0 2 S0
D be

given. For m = 0 ? M � 1, find Umþ1 2 Sm
D ;

~Xmþ1 2 VðCmÞ and jmþ1
c 2WðCmÞ such that:
#
Umþ1 � Um

sm
;u

 !h

m

þ KrUmþ1;ru
� �

� k pm
~Xmþ1 �~Xm

sm
� ~xm

" #
;u

* +}
m

¼ f mþ1;u
 �h

m 8 u 2 Sm
0 ; ð3:5aÞ

q b ~mmð Þ½ ��1
~Xmþ1 �~Xm

sm
;v~xm

* +h

m

� a jmþ1
c ;v

D Eh

m
þ a Umþ1;v

D E}
m
¼ 0 8 v 2W Cmð Þ; ð3:5bÞ

jmþ1
c ~xm;~g

D Eh

m
þ reGs ~Xmþ1;reGs ~gD E

c;m
¼ 0 8 ~g 2 V Cmð Þ; ð3:5cÞ
and set Cmþ1 ¼ ~Xmþ1ðCmÞ. In the above, we have fm+1(�) :¼ f(�,tm+1) and either:
ðiÞ h�; �i}m ¼ h�; �i
h
m; or ðiiÞ h�; �i}m ¼ h�; �i

I

m; or ðiiiÞ h�; �i}m ¼ h�; �im: ð3:6Þ
Here in (ii) we consider a discrete inner product on Cm that is exact for functions that are piecewise linear on intersections
rm

j \ om
l between Cm and the bulk mesh T m; see Section 4 for details. In addition, for # > 0, the initial value U0 2 S0

D is given by
U0 = I0[u0], where u0 2 CðXÞ is the given initial data from (2.1e).

We note that the quadrature employed in (3.6)(i), recall (3.3), is exact for functions that are piecewise linear on Cm. Fi-
nally, for the choice (iii) we need to employ a quadrature that is exact for functions that are piecewise quadratic on inter-
sections rm

j \ om
l between Cm and the bulk mesh; see once again Section 4 for details.

Moreover, hreGs �;reGs � ic;m in (3.5c) is the discrete inner product defined by
reGs ~v;reGs ~gD E
c;m

:¼
XL

‘¼1

Z
Cm

c‘ð~mmþ1Þ
cð~mmþ1Þ

� �r�1

reG‘

s
~v;reG‘

s ~g
� �eG‘

c‘ð~mmÞ ds: ð3:7Þ
Note that (3.7) is a natural discrete analogue of (2.9), see [9] for details. The particular choice of normals from the old
surface, Cm, and the new surface, Cm+1, ensures that for the solutions to (3.5a)–(3.5c) the weighted surface area jCmjc sat-
isfies a discrete energy law, which mimics the continuous equivalent. In particular, this will lead to unconditionally stable
approximations in certain situations; see Theorem 3.1, below. Note that the particular choice of surface normals in (3.7)
leads in general to a nonlinear system for ðUmþ1;~Xmþ1;jmþ1Þ. However, the simpler case r = 1 leads to a linear system.

Remark 3.2. Observe that (3.5b), (3.5c) with a = 0 and b 	 1, on noting (3.4), collapses to the parametric finite element
approximation of anisotropic mean curvature flow introduced in [9].
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The following theorem proves existence and uniqueness for a solution to (3.5a)–(3.5c) in the linear case r = 1, and estab-
lishes a discrete energy bound for general r 2 [1,1). The lack of an existence proof for r > 1 is explained in detail for a related
situation in [9, Remark 3.3]. But we note that in practice we had no difficulties in finding solutions to the nonlinear system
(3.5a)–(3.5c), and the employed iterative solvers always converged; see Section 4.2 below.

Theorem 3.1. Let the assumption (A) hold. Then, if r = 1, there exists a unique solution ðUmþ1;~Xmþ1;jmþ1
c Þ 2 Sm

D�
VðCmÞ �WðCmÞ to (3.5a)–(3.5c). Let uD 2 R, with uD = 0 in the case (2.7)(ii), and define:
EmðUm;~XmÞ :¼ #
2
jUm � uDj2X;m þ

ak
a
jCmjc: ð3:8Þ
Then, for r 2 [1,1), a solution to (3.5a)–(3.5c) satisfies:
Em Umþ1;~Xmþ1
� �

þ kuD
~Xmþ1 �~Xm; ~xm
D Eh

m
þ #

2
Umþ1 � Um
��� ���2

X;m
þ sm KrUmþ1;rUmþ1

� �
þ sm

kq
a

b ~mmð Þ½ ��
1
2
~Xmþ1 �~Xm

sm
:~xm

�����
�����
2

m;h

6 Em Um;~Xm
� �

þ sm f mþ1;Umþ1 � uD

� �h

m
: ð3:9Þ
Proof. As the system (3.5a)–(3.5c) is linear for r = 1, existence follows from uniqueness. In order to establish the latter, we
consider the system: Find ðU;~X;jcÞ 2 Sm

0 � VðCmÞ �WðCmÞ such that:
# U;uð Þhm þ sm ðKrU;ruÞ � k pm ~X � ~xm
h i

;u
D E}

m
¼ 0 8u 2 Sm

0 ; ð3:10aÞ

q
sm

bð~mmÞ½ ��1~X;v~xm
D Eh

m
� a jc;v


 �h
m þ a U;vh i}m ¼ 0 8v 2WðCmÞ; ð3:10bÞ

jc ~xm;~g

 �h

m þ r
eG
s
~X;reGs ~gD E

c;m
¼ 0 8~g 2 VðCmÞ: ð3:10cÞ
Choosing u = U in (3.10a), v ¼ k
a pm½~X:~xm� in (3.10b) and ~g ¼ a k

a
~X in (3.10c) yields, on noting (3.4), that:
# ðU;UÞhm þ sm ðKrU;rUÞ þ kq
sm a

bð~mmÞ½ ��
1
2~X � ~xm

��� ���2
m;h
þ ak

a
reGs ~X;reGs ~XD E

c;m
¼ 0: ð3:11Þ
It immediately follows from (3.11) that U 	 Uc 2 R, with Uc = 0 if # > 0 or Sm
0 XSm. In addition, on recalling that a,k > 0, it

holds that ~X 	 ~Xc 2 Rd. Together with (3.10a) and the assumption ðAÞ this immediately yields that ~X 	~0, while (3.10c) with
~g ¼ ~pm½jc ~xm� implies that jc 	 0. Then it follows from (3.10b) that U 	 0. Hence there exists a unique solution

ðUmþ1;~Xmþ1;jmþ1
c Þ 2 Sm

D � VðCmÞ �WðCmÞ.
It remains to establish the bound (3.9). Choosing u = Um+1 � uD in (3.5a), v ¼ k

a pm½ð~Xmþ1 �~XmÞ � ~xm� in (3.5b) and
~g ¼ ak

a ð~Xmþ1 �~XmÞ in (3.5c) yields that:
# Umþ1 � Um;Umþ1 � uD

� �h

m
þ sm KrUmþ1;rUmþ1

� �
þ ak

a
reGs ~Xmþ1;reGs ~Xmþ1 �~Xm

� �D E
c;m

þ sm
kq
a

b ~mmð Þ½ ��
1
2
~Xmþ1 �~Xm

sm
� ~xm

�����
�����

2

m;h

¼ �kuD
~Xmþ1 �~Xm; ~xm
D Eh

m
þ sm f mþ1;Umþ1 � uD

� �h

m
;

and hence (3.9) follows immediately, where we have used the result that:
reGs ~Xmþ1;reGs ð~Xmþ1 �~XmÞ
D E

c;m
P jCmþ1jc � jC

mjc;
see e.g. [7] and [9] for the proofs for d = 2 and d = 3, respectively. h
Remark 3.3. We note that (3.9) closely mimics the corresponding continuous energy law (2.13). The reason why it is not an
exact discrete analogue of (2.13) is that in general, the difference h~Xmþ1 �~Xm; ~xmihm does not correspond to the discrete vol-
ume change volðXmþ1

s Þ � volðXm
s Þ, and so we do not control the discrete energy:
eEmðUm;~XmÞ :¼ EmðUm;~XmÞ þ kuD vol Xm
s

 �
; ð3:12Þ
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where Xm
s is the approximation of the solid region at time tm. However, on recalling (2.11), we observe that the former dif-

ference is an approximation of the latter. Hence we are satisfied that (3.9), in a weak sense, is a discrete analogue of (2.13). Of
course, in the trivial case that uD = 0, e.g. when (2.7)(ii) holds, (3.12) reduces to (3.8), the discussed difference term vanishes
in (3.9), and an unconditional stability result, based on (3.8) can be shown; see Theorem 3.2 below. Moreover, for a semi-
discrete version of our scheme (3.5a)–(3.5c), an exact discrete analogue of (2.13) can be shown; see Remark 3.5 below.
Finally, we note that the energy (3.12) always decreased monotonically in all of our numerical experiments in Section 6, with
the mesh adaptation strategies described there, when fm = 0, m = 1 ? M.
Theorem 3.2. Let (2.7) hold with uD = 0. In addition, assume that either # = 0 or Um 2 Sm
D for m = 1 ? M � 1. Then it holds that:
Em Umþ1;~Xmþ1
� �

þ
Xm

k¼0

sk KrUkþ1;rUkþ1
� �

þ kq
a

b ~mk
 �� 	�1

2
~Xkþ1 �~Xk

sk
� ~xk

�����
�����

2

k;h

24 35
6 E0 U0;~X0

� �
þ
Xm

k¼0

sk f kþ1;Ukþ1 � uD

� �h

k
ð3:13Þ
for m = 0 ? M � 1.
Proof. The result immediately follows from (3.9) on noting that, if # > 0, it follows from Um 2 Sm
D that

EmðUm;~XmÞ ¼ Em�1ðUm;~XmÞ for m = 1 ? M � 1. h
Remark 3.4. Theorem 3.2 establishes the unconditional stability of our scheme (3.5a)–(3.5c) under certain conditions. Of
course, if uD – 0, analogous weaker stability results based on (3.9) can be derived. We note that the condition Um 2 Sm

D is triv-
ially satisfied if Sm�1

D � Sm
D , e.g. when mesh refinement routines without coarsening are employed. In the simpler case that

# = 0, the stability bounds (3.13) and (3.9) are independent of Um and so here stability holds for arbitrary choices of bulk
meshes T m.
Remark 3.5. It is worthwhile to consider a continuous-in-time semidiscrete version of our scheme (3.5a)–(3.5c). Let T be an
arbitrarily fixed triangulation of X and define the finite element spaces S, S0 and SD similarly to (3.1) and (3.2), with the cor-
responding lumped inner product (�,�)h on X. Then, given Ch(0) and, if # > 0, U(0) 2 SD, for t 2 ð0; T� find
UðtÞ 2 SD; ~XðtÞ 2 VðChðtÞÞ and jc(t) 2W(Ch(t)) such that:
# Ut ;uð Þh þ ðKrU;ruÞ � k ph ~Xt � ~xh
h i

;u
D E}

h
¼ ðf ;uÞh 8u 2 S0; ð3:14aÞ

q bð~mhÞ
� 	�1~Xt;v~xh
D Eh

h
� a jc;v


 �h
h þ a U;vh i}h ¼ 0 8v 2WðChðtÞÞ; ð3:14bÞ

jc ~xh;~g

 �h

h þ r
eG
s
~X;reGs ~gD E

c;h
¼ 0 8~g 2 VðChðtÞÞ; ð3:14cÞ
where we always integrate over the current surface Ch(t), with normal ~mhðtÞ, described by the identity function
~XðtÞ 2 VðChðtÞÞ. In addition, ~xh is the Ch analogue of ~xm and ph : CðCh;RÞ !WðChðtÞÞ is the standard interpolation operator

on Ch. Moreover, h�; �iðhÞh is the same as h�; �iðhÞm with Cm and ~Xm replaced by Ch and ~X, respectively; and similarly for h�; �i}h and
h � , � ic,h. For the semidiscrete approximation (3.14a)–(3.14c) we can show the following true volume conservation property
in the case f 	 0 for Neumann boundary conditions, i.e. when S0 = S. First observe that (3.4) yields that:
ph ~Xt � ~xh
h i

;1
D E}

h
¼ ~Xt ; ~xh
D Eh

h
¼ ~Xt ;~mh
D Eh

h
¼
Z

ChðtÞ

~Xt �~mh ds: ð3:15Þ
Then, choosing u = 1 in (3.14a), we obtain, on noting (3.15) and (2.11), that:
# ðUt;1Þ � k
Z

ChðtÞ

~Xt �~mh ds ¼ d
dt

# ðU;1Þ � kvol Xh
s ðtÞ

� �h i
¼ 0: ð3:16Þ
Clearly, (3.16) is the discrete analogue of (2.14). In addition, using the results from [9] it is straightforward to show that:
d
dt
jChðtÞjc ¼

XL

‘¼1

Z
ChðtÞ

c‘ð~mhÞ
cð~mhÞ

� �r�1

ðreG‘

s
~X;reG‘

s
~XtÞeG‘

c‘ ~m
h

 �
ds ¼ reGs ~X;reGs ~Xt

D E
c;h
;

recall (2.9). It is then not difficult to derive the following stability bound for the solution ðU;~X;jcÞ of the semidiscrete scheme
(3.14a)–(3.14c):
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d
dt

#

2
U � uDj j2X;h þ

ak
a

Ch tð Þ
��� ���

c
þ kuD vol Xh

s tð Þ
� �� �

þ KrU;rUð Þ þ kq
a

b ~mh
 �� 	�1

2~Xt:~xh
��� ���2

Ch ;h
¼ f ;U � uDð Þh; ð3:17Þ
where Xh
s ðtÞ is the approximation of the solid region at time t. Clearly, (3.17) is the natural discrete analogue of (2.13).

In addition, it is possible to prove that the vertices of Ch(t) are well distributed. As this follows already from the Eq.
(3.14c), we refer to our earlier works [7,9,8] for further details.

Finally, we remark that (3.14a)–(3.14c) in the case # = q = f = 0, i.e. our semidiscrete scheme for Mullins–Sekerka in the
absence of external heat sources, has a natural interpretation as a spatially discrete gradient flow for the surface energy jCjc.
We refer the interested reader to the Appendix A, where we will give further details on viewing Mullins–Sekerka as a
gradient flow and, as a consequence, on an alternative way to introduce the approximations (3.14a)–(3.14c) and (3.5a)–
(3.5c) for Mullins–Sekerka.
Remark 3.6. From a practical point of view, it seems natural to also consider decoupled variants of our scheme (3.5a)–(3.5c),
where the bulk and interface equations can be solved for independently. Here we note that, if q > 0, it is straightforward to
show that, given Um+1, there exists a unique solution ð~Xmþ1;jmþ1

c Þ to (3.5b), (3.5c) in the case r = 1, with practical and reliable
solution methods available also for r > 1; see [9] for details. One such scheme would replace Um+1 in (3.5b) with Um. Then, for
q > 0, the adapted (3.5b), (3.5c) can be solved first to obtain ð~Xmþ1;jmþ1

c Þ, followed by the solution of (3.5a) in order to find
Um+1. Of course, this approach breaks down when q = 0, as then the new (3.5b), (3.5c) is no longer uniquely solvable. More-
over, in the case # = 0 a suitable U0 needs to be defined.

A second variant would replace the third term in (3.5a), on recalling (2.1b), (2.1c), with:
k
q

bð~mmÞ aUmþ1 � ajm
c

h i
;u

D E}
m
;

where once again we have assumed that q > 0. Then, on defining a suitable j0
c , the adapted (3.5a) can first be solved in order

to find Um+1, followed by the solution of (3.5b), (3.5c) to obtain ð~Xmþ1;jmþ1
c Þ. This second approach is very close to the

procedure adopted in [51]. An advantage of the two modifications discussed above is that, thanks to the decoupling of bulk
and interface equation, computing the solution ðUmþ1;~Xmþ1;jmþ1

c Þ is much less involved; see Section 4 below for possible
solution methods for the original scheme (3.5a)–(3.5c). However, as we also want to consider quasi-static variants of the
Stefan problem, including the case q = 0, and as it does not appear possible to prove stability estimates for the new variants
in the spirit of Theorem 3.1, we prefer to use (3.5a)–(3.5c).
3.1. Boundary intersections

In our presentation so far we have assumed that C has no boundary, i.e. that oC(t) = ; for t 2 ½0; T�. But it is not difficult to
generalize our model and our finite element approximation to the case, where the interface C intersects the external bound-
ary, i.e. oC(t) � oX.

To this end, we use the techniques introduced in [7] (for d = 2) and [11] (for d = 3), in order to generalize the approxima-
tion (3.5a)–(3.5c) to this situation. For m P 0 assume that oCm � oX and define:
VoðCmÞ :¼ ~v 2 VðCmÞ : ~vð~qÞ �~mX ¼ 0 8 ~q 2 oCm \ f~qm
k g

Km
C

k¼1

n o
; ð3:18Þ
where we recall that as X is assumed to be polyhedral, the boundary oX is locally flat. Then (3.5a)–(3.5c) is adapted to: Find
Umþ1 2 Sm

D ; d
~Xmþ1 2 VoðCmÞ and jmþ1

c 2WðCmÞ, where ~Xmþ1 ¼ ~Xm þ d~Xmþ1, such that:
#
Umþ1 � Um

sm
;u

 !h

m

þ ðKrUmþ1;ruÞ � k pm d~Xmþ1

sm
:~xm

" #
;u

* +}
m

¼ ðf mþ1;uÞhm 8u 2 Sm
0 ; ð3:19aÞ

q bð~mmÞ½ ��1 d~Xmþ1

sm
;v~xm

* +h

m

� a jmþ1
c ;v

D Eh

m
þ a Umþ1;v

D E}
m
¼ 0 8 v 2WðCmÞ; ð3:19bÞ

jmþ1
c ~xm;~g

D Eh

m
þ reGs ~Xmþ1;reGs ~gD E

c;m
¼ 0 8~g 2 VoðCmÞ: ð3:19cÞ
We note that the above includes a linearization of the constraint oC(t) � oX, which means that for curved external
boundaries oX in general it does not hold that oCm+1 � oX. For a domain X with piecewise flat boundary, as assumed in
(3.18), on the other hand, it is easy to show that oCm+1 � oX, m = 0 ? M � 1, if oC0 � oX. We refer to [7] and [11] for more
detailed discussions.
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4. Solution of the discrete system

4.1. The linear case

Introducing the obvious abuse of notation, the linear system (3.5a)–(3.5c) in the case r = 1 can be formulated as: find
ðUmþ1;jmþ1

c ; d~Xmþ1Þ such that:
1
sm

MX þ AX 0 � k
sm
~NT

C;X

�aMC;X aMC � q
sm
½~NðbÞC �

T

0 ~NC
~AC

0BB@
1CCA

Umþ1

jmþ1
c

d~Xmþ1

0BB@
1CCA ¼

1
sm

MX Um

0
�~AC

~Xm

0B@
1CA; ð4:1Þ
where ðUmþ1;jmþ1
c ; d~Xmþ1Þ 2 RKm

X � RKm
C � ðRdÞK

m
C here denote the coefficients of these finite element functions with respect to

the standard bases of Sm
D ;WðC

mÞ and V(Cm), respectively. The definitions of the matrices in (4.1) directly follow from (3.5a)–
(3.5c), but we state them here for completeness, at least for the case oX = oNX. Let i; j ¼ 1! Km

X and k; l ¼ 1! Km
C . Then:
MX½ �ij :¼ # /m
j ;/

m
i

� �h
; AX½ �ij :¼ Kr/m

j ;r/m
i

� �
;

MC;X½ �li :¼ /m
i ;v

m
l


 �}
m;

~NC;X

h i
li

:¼ /m
i ;p

m vm
l
~ej

 �
:~xm

� 	
 �}
m

� �d

j¼1
¼ /m

i ;v
m
l


 �}
m
~xm

l ;

MC½ �kl :¼ vm
l ;v

m
k


 �h
m;

~AC

h i
kl

:¼ reGs vm
l
~ei

 �
;reGs vm

k
~ej

 �D E
c;m

� �d

i;j¼1
;

~NC

h i
kl

:¼ vm
l ;v

m
k
~xm


 �h
m;

~N bð Þ
C

h i
kl

:¼ b ~mmð Þ½ ��1vm
l ;v

m
k
~xm

D Eh

m
¼ b ~mmð Þ½ ��1vm

l ;v
m
k

D Eh

m
~xm

l ; ð4:2Þ
where f~eigd
i¼1 denotes the standard basis in Rd and where we have used the convention that the subscripts in the matrix

notations refer to the test and trial domains, respectively. A single subscript is used where the two domains are the same.
On observing that MC is a diagonal matrix, that ~NC and ~NðbÞC are block diagonal matrices and that ~xm

l ¼ ½MC��1
ll ½~NC�ll we note

that:
~NC;X ¼ ~NC M�1
C MC;X and ~NC M�1

C
~NðbÞC

h iT
¼ ~NðbÞC M�1

C
~NT

C; ð4:3aÞ
where the last matrix is a symmetric block diagonal matrix with diagonal entries:
bð~mmÞ½ ��1 vm
l ;v

m
l

D Eh

m
~xm

l � ~xm
l ; l ¼ 1! Km

C ; ð4:3bÞ
which obviously are positive semi-definite d � d matrices.
If q > 0, a Schur complement approach can be applied to yield the following reduced system. First we eliminate jmþ1

c from
(4.1) to obtain:
BX � k
sm
~NT

C;X

a
a
~NC;X

~KC

 !
Umþ1

d~Xmþ1

 !
¼

1
sm

MX Um

�~AC
~Xm

 !
; ð4:4Þ
where we recall (4.3a), and where:
BX :¼ 1
sm

MX þ AX and ~KC :¼ ~AC þ
q

asm

~NC M�1
C

~NðbÞC

h iT
: ð4:5Þ
On noting that ~KC, for q > 0, is symmetric positive definite, recall (4.3a), (4.3b), and hence invertible, we observe that (4.1)
can be equivalently formulated as
BX þ
k
sm

a
a
~NT

C;X
~K�1

C
~NC;X

� �
Umþ1 ¼ 1

sm
MX Um � k

sm

~NT
C;X

~K�1
C
~AC
~Xm; ð4:6aÞ
and
d~Xmþ1 ¼ �~K�1
C

a
a
~NC;X Umþ1 þ~AC

~Xm
h i

; ð4:6bÞ

jmþ1
c ¼ 1

a
M�1

C aMC;X Umþ1 þ q
sm
½~NðbÞC �

T d~Xmþ1
� �

: ð4:6cÞ
Clearly, the operator on the left-hand side of (4.6a) is symmetric and positive definite. A natural preconditioner for (4.6a)
is B�1

X , with the obvious caveat when # = 0 and oNX = oX. In that case, BX is singular, and the inverse B�1
X needs to be replaced

with the generalized inverse RX, see (4.8) below. Finally, a further Schur complement approach would eliminate Um+1 from
(4.4), and then solve in terms of d~Xmþ1 only. I.e.
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~KC þ
k
sm

a
a
~NC;X B�1

X
~NT

C;X

� �
d~Xmþ1 ¼ �~AC

~Xm � 1
sm

a
a
~NC;X B�1

X MX Um; ð4:7aÞ
and
Umþ1 ¼ B�1
X

1
sm

MX Um þ k
sm

~NT
C;X d~Xmþ1

� �
; ð4:7bÞ
together with (4.6c). Similarly to (4.6a), we note that (4.7a) is a symmetric positive definite system. An advantage of (4.7a) is
that it can be applied also in the case q = 0, however, as noted above, the matrix BX is singular when # = 0 and oNX = oX. As
this situation can arise in practice, e.g. for the Mullins–Sekerka problem with Neumann boundary conditions, we now devel-
op a Schur complement solver for this case.

To this end, we now generalize (4.7a) to the case when the matrix BX, recall (4.5) and (4.2), is singular, i.e. when # = 0 and
oNX = oX, making use of ideas in [6]. Then BX = AX, with the kernel of AX given as kerAX = span{1}, where
1 ¼ ð1; . . . ;1ÞT 2 RKX . We introduce the inverse RX of AX restricted on the set (kerAX)\, where �\ acting on a space denotes
its orthogonal complement, i.e.
RX AX v ¼ AXRX v ¼ v 8 v 2 ðker AXÞ?: ð4:8Þ
Then, on noting that the first equation in (4.1) implies that 1T ~NT
C;X d~Xmþ1 ¼ 0, we obtain:
~KC þ
k
sm

a
a
~NC;X PXRX PX

~NT
C;X

� �
d~Xmþ1 ¼ �~AC

~Xm � n
a
a
~NC;X 1 ð4:9aÞ
and
Umþ1 ¼ k
sm
RX

~NT
C;X d~Xmþ1 þ n1 ¼ k

sm
PXRX PX

~NT
C;X d~Xmþ1 þ n1; ð4:9bÞ
where n ¼ ½1T 1��11T Umþ1 2 R is unknown, and where PX ¼ IdKX �
11T

1T 1 is the orthogonal projection onto (kerAX)\.
Writing (4.9a) as ~Dd~Xmþ1 ¼ �~AC

~Xm � n~w, its solution can be found as follows, where we note that the invertibility of D
follows from Theorem 3.1. Let d~Xg :¼ �~D�1~AC

~Xm and d~Xw :¼ ~D�1 ~w. Then:
n ¼
1T ~NT

C;X d~Xg

1T ~NT
C;X d~Xw

and d~Xmþ1 ¼ d~Xg � nd~Xw;
is the solution to (4.9a). The remaining part of the solution to (4.1) can then be found via (4.9b) and (4.6c).

4.2. The nonlinear case

For a general r 2 (1,1) a lagged coefficient fixed point type iteration needs to be employed, i.e. the natural extension of

the scheme in [9]. At each time step, given ðUmþ1;0;~Xmþ1;0Þ :¼ ðUm;~XmÞ, we seek for i P 0 solutions ðUmþ1;iþ1
2;jmþ1;iþ1

2
c ;

~Xmþ1;iþ1
2Þ 2 Sm

D �WðCmÞ � VðCmÞ such that for all u 2 Sm
0 , v 2W(Cm) and ~g 2 VðCmÞ:
#
Umþ1;iþ1

2 � Um

sm
;u

 !h

m

þ ðKrUmþ1;iþ1
2;ruÞ � k pm

~Xmþ1;iþ1
2 �~Xm

sm
:~xm

" #
;u

* +}
m

¼ ðf mþ1;uÞhm; ð4:10aÞ

q bð~mmÞ½ ��1
~Xmþ1;iþ1

2 �~Xm

sm
;v~xm

* +h

m

� a jmþ1;iþ1
2

c ;v
D Eh

m
þ a Umþ1;iþ1

2;v
D E}

m
¼ 0; ð4:10bÞ

jmþ1;iþ1
2

c ~xm;~g
D Eh

m
þ reGs ~Xmþ1;iþ1

2;reGs ~gD E
c;m;i
¼ 0; ð4:10cÞ
where, similarly to (3.7):
reGs ~v;reGs ~gD E
c;m;i

:¼
XL

‘¼1

Z
Cm

c‘ð~mmþ1;iÞ
cð~mmþ1;iÞ

� �r�1

ðreG‘

s
~v;reG‘

s ~gÞeG‘
c‘ð~mmÞ ds ¼ 0:
On obtaining ~Xmþ1;iþ1
2 from (4.10a)–(4.10c), e.g. by employing the Schur complement approach as in (4.7a), we set:
~Xmþ1;iþ1 ¼ ð1� liÞ~Xmþ1;i þ li
~Xmþ1;iþ1

2; ð4:11Þ
where li 2 [l,1] is a damping parameter and l 2 (0,1) is fixed. The iteration (4.10a)–(4.10c), (4.11) is repeated until
k~Xmþ1;iþ1 �~Xmþ1;ik1 < tol; ð4:12Þ
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where tol = 10�7 is a chosen tolerance. Upon convergence, we fix li 	 1 and repeat the iteration for (4.10a)–(4.10c), (4.11)

until the criterion (4.12) is satisfied again. On convergence we set ðUmþ1;~Xmþ1;jmþ1
c Þ :¼ ðUmþ1;iþ1

2;~Xmþ1;iþ1
2;

jmþ1;iþ1
2

c Þ 	 ðUmþ1;iþ1;~Xmþ1;iþ1;jmþ1;iþ1
c Þ. In practice, the described iterative procedure always converged, provided l and ini-

tially li were chosen sufficiently small. The same observation had been made in [9] for essentially the iteration (4.10b),
(4.10c), (4.11) with a = 0.

4.3. Boundary intersections

The approximation (3.19a)–(3.19c) in the linear case r = 1 can be formulated as: find ðUmþ1;jmþ1
c ; d~Xmþ1Þ 2 RKm

X � RKm
C �X

such that:
BX 0 � k
sm
~NT

C;X

�aMC;X aMC � q
sm

~NðbÞC

h iT

0 PC
~NC PC

~AC

0BBB@
1CCCA

Umþ1

jmþ1
c

PCd~Xmþ1

0BB@
1CCA ¼

1
sm

MXUm

0
�PC

~AC
~Xm

0B@
1CA; ð4:13Þ
where PC : ðRdÞK
m
C ! X � ðRdÞK

m
C is the orthogonal projection onto the Euclidean vector space associated with Vo(C

m). We re-
fer to [7] and [11] for further details.

It is not difficult to generalize the Schur complement approaches (4.7a) and (4.9a) to the linear system (4.13). For exam-
ple, in the former case, we obtain:
PC
~KC þ

k
sm

a
a
~NC;XB�1

X
~NT

C;X

� �
PCd~Xmþ1 ¼ �PC

~AC
~Xm � 1

sm

a
a
~NC;XB�1

X MXUm ð4:14Þ
and (4.7b), (4.6c), on noting that PC d~Xmþ1 ¼ d~Xmþ1.

4.4. Direct and iterative solvers

One can solve (4.1) or (4.4) either with a sparse direct solver such as UMFPACK, see [21]; or with an iterative solver for
one of the previously introduced Schur complement approaches. For the computations presented in this paper, we always
use iterative solvers, and we only compute the values that are needed. In particular, for the Stefan problem one only needs
to compute ~Xmþ1 and Um+1, while for the Mullins–Sekerka problem one only needs to compute ~Xmþ1.

If q > 0, then we compute the discrete solutions with a preconditioned conjugate gradient (pCG) solver for (4.6a). Here the
applications of K�1

C and the preconditioner B�1
X are computed exactly, with the help of sparse direct solvers for symmetric

positive definite matrices. We employ the sparse LDLT factorization package LDL ([22]), together with the sparse matrix
ordering package AMD ([2]). For large scale three dimensional computations the direct factorization of BX can become inef-
ficient. Then, as an alternative, the action of B�1

X may also be computed with the help of a multigrid solver.
In the case q = 0 we use a pCG solver for (4.7a) and (4.9a), respectively. Here the actions of B�1

X and RX are once again
computed with the help of either LDL/AMD or a multigrid solver. In addition, we employ the inverses of diagð~KCÞ or
~LC :¼ ~KC þ
a
a

k
sm

~NC;X diagðBXÞ�1~NT
C;X
as preconditioners, where the latter is not always sparse and hence not always practical.
The linear system (4.13), is always solved with the help of a pCG solver for (4.14) or, in the case that BX is singular, with

the obvious analogue of (4.14). In the former case, the preconditioners K�1
C when q > 0, and [diag (KC)]�1 when q = 0 prove

efficient, whereas in the latter case we employ PX K�1
C PX and PX[diag (KC)]�1PX, respectively.

4.5. Assembly of interface-bulk cross terms

We note that the assembly of the matrices arising from (3.5a)–(3.5c) is mostly standard. For the cross terms between bulk
mesh and parametric mesh one needs to compute contributions of the form:
ðiÞ /m
i ;v

m
j

D Eh

m
¼ /m

i ð~qm
j Þ vm

j ;v
m
j

D Eh

m
; ðiiÞ /m

i ;v
m
j

D EI

m
; ðiiiÞ /m

i ;v
m
j

D E
m
; ð4:15Þ
where f/m
i g

Km
X

i¼1 and fvm
j g

Km
C

j¼1 are the canonical basis functions of Sm and W(Cm), respectively. In the following, we state pre-
cisely how (4.15) can be computed in practice. Clearly, (4.15)(i) only needs to evaluate the bulk basis function /m

i at the ver-
tex ~qm

j of Cm; a simple task. For the choices (ii) and (iii), on the other hand, we need to compute the intersections between
bulk elements om

l and surface mesh elements rm
j . For notational convenience, we will drop the subscripts l and j in the

remainder of this subsection.
In two space dimensions, i.e. d = 2, the intersection of a segment rm of the polygonal curve Cm and a bulk mesh element

om 2 T m is always given by a segment, say om \ rm ¼ ½~q1;~q2�. Then the contribution over ½~q1;~q2� for (4.15)(ii) is
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/m
i ;vm

j

D EI

½~q1 ;~q2 �
:¼ 1

2
j~q1 �~q2j

X2

k¼1

/m
i ð~qkÞvm

j ð~qkÞ: ð4:16aÞ
Similarly, the contribution over ½~q1;~q2� for (4.15)(iii) is
/m
i ;v

m
j

D E
½~q1 ;~q2 �

:¼ 1
6
j~q1 �~q2j

X2

k¼0

xk/
m
i ð~qkÞvm

j ð~qkÞ; ð4:16bÞ
where ~q0 :¼ 1
2

P2
k¼1~qk and x0 ¼ 2

3, x1 ¼ x2 ¼ 1
6 from Simpson’s rule.

The natural generalizations of (4.16a), (4.16b) to d = 3 are given as follows. Here the intersection of a triangular element
rm of the polyhedral surface Cm with a bulk mesh element om is a convex l-polygon P, with 3 6 l 6 7. Some example inter-
sections are given in Fig. 4, with our algorithm to compute P stated below. Then the contribution over P 	 convðf~qigl

i¼1Þ for
(4.15)(ii) is
h/m
i ;v

m
j i

I

P :¼
Xl

k¼0

xPk /m
i ð~qkÞvm

j ð~qkÞ;
where~q0 :¼ 1
l

Pl
k¼1~qk is the centroid of P and the weights xPk are easily defined such that hu;1ihm ¼ hu;1im for all u 2 Sm, by

partitioning P into triangles having ~q0 as a vertex; see Fig. 5. Similarly, the contribution over P for (4.15)(iii) is
/m
i ;vm

j

D E
P

:¼
X2l

k¼1

xPk /m
i ð~pkÞvm

j ð~pkÞ;
where ~pk :¼ 1
2 ½~q0 þ~qk� and ~plþk :¼ 1

2 ½~qk þ~qkþ1� for k = 1 ? l, where ~qlþ1 :¼~q1. The weights xPk are easily defined such that
hu;vihm ¼ hu;vim for all u 2 Sm and all v 2W(Cm), by partitioning P into triangles having ~q0 as a vertex; see Fig. 5.

We now describe our algorithm for finding the intersection P ¼ om \ rm between a bulk element om and a parametric ele-
ment rm in R3.

1. For each vertex of the triangle rm, test whether it is inside the tetrahedra om. If it is, add it to the list of vertices of P.
2. For each edge of rm with at least one vertex not inside om, test whether it intersects any of the four faces of om. If it does

so, add the intersection to the set of vertices of P.
3. For each of the six edges of om, test whether it intersects rm. If it does, add the intersection to the set of vertices of P.
4. Remove any duplicate vertex in P.

The above algorithm computes P ¼ om \ rm for a given pair of elements. In order to find all such pairs with nonempty
intersection P, we employ for each parametric element rm a hierarchical search in the bulk mesh tree, in order to find all
bulk elements om that have nonempty intersection with it. Hence the overall complexity of assembling the matrices MC,X
Fig. 4. Intersections of a triangle and a simplex in R3.

Fig. 5. Sketch of P with sampling points for (4.15)(ii) (left) and (4.15)(iii) (right).
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and ~NC;X is OðJm
C log Jm

X Þ. Better complexities have recently been shown for triangle-triangle and tetrahedra-tetrahedra mesh
intersections, on utilizing commonly available element neighbouring information; see [30].

5. Mesh adaptation

We implemented our finite element approximation (3.5a)–(3.5c) within the framework of the finite element toolbox AL-
BERTA, see [53]. In what follows we describe the mesh refinement strategies used for both bulk and interface mesh.

5.1. Bulk mesh adaptation

Given a polyhedral approximation Cm, m P 0, of the interface, we employ the following mesh adaptation strategy for the
bulk mesh triangulation T m. The strategy is inspired by a similar refinement algorithm proposed in [12] and [3] for d = 2 and
d = 3, respectively. It results in a fine mesh around Cm and a coarse mesh further away from it.

In particular, given two integer parameters Nf > Nc, we set hf ¼ 2 H
Nf
;hc ¼ 2 H

Nc
, where for simplicity we assume that X =

(�H,H)d. Then we set:
volf ¼
hd

f

d!
and volc ¼

hd
c

d!
;

that is, for d = 3, volf denotes the volume of a tetrahedron with three right-angled and isosceles faces with side length hf,
while for d = 2 it denotes the area of a right-angled and isosceles triangle with side length hf, and similarly for volc.

Now starting with the triangulation T m�1 from the previous time step, where here for convenience we define T �1 to be a
uniform partitioning of mesh size hc, we obtain T m as follows. First any element om�1 2 T m�1 satisfying jom�1jP 2 volf and
om�1 \ Cm – ; is marked for refinement. In addition, any element satisfying jom�1jP 2 volf, for which a direct neighbour
intersects Cm, is also marked for refinement. Similarly, an element that is not marked for refinement is marked for coarsen-
ing if it satisfies jom�1j 6 1

2 volc and om�1 \Cm = ;. Now all the elements marked for refinement are halved into two smaller
elements with the help of a simple bisectioning procedure, see [53] for details. In order to avoid hanging nodes, this will in
general lead to refinements of elements that were not originally marked for refinement. Similarly, an element that is marked
for coarsening is coarsened only if all of its neighbouring elements are marked for coarsening as well. For more details on the
refining and coarsening itself we refer to [53].

This marking and refinement process is repeated until no more elements are required to be refined or coarsened. Thus we
obtain the triangulation T m on which, together with Cm, the new solutions ðUmþ1;~Xmþ1;jmþ1

c Þ will be computed. In practice
only at the first time step, m = 0, more then one of the described refinement cycles are needed.

We note that, as observed in Remark 3.4, the coarsening in the above described mesh adaptation means that for # > 0 the
conditions of Theorem 3.2 are in general not satisfied.

5.2. Parametric mesh adaptation

As mentioned before, the Eq. (3.5c) means that the vertices of the parametric approximation Cm are in general very well
distributed, so that mesh smoothing (redistribution) is not necessary in practice. Similarly, an adaptation of the parametric
mesh is in general not necessary. However, in almost all of our presented simulations, the total surface area jCmj increases
significantly over time. Hence constant-in-time parametric discretization parameters will either mean that the interface is
initially ‘‘over-resolved’’, which is computationally inefficient, or that the interface approximation lacks accuracy at later
stages. Hence, we consider a very simple adaptive strategy that will lead to an efficient algorithm, as well as accurate res-
olution of the interface throughout. In addition, this strategy will mean that both the bulk mesh size around the interface, as
well as the parametric mesh size on the interface will be of the same order throughout the evolution.

The mesh refinement strategy can be described as follows, where we assume that an arbitrary polyhedral approximation
C0 of C(0) is given. Let:
volmax :¼ max
j¼1!J0

C

jr0
Cj:
Then for an arbitrary m P 0, given Cm and the solution ðUmþ1;~Xmþ1;jmþ1
c Þ to (3.5a)–(3.5c), we define Cmþ1;I :¼ ~Xmþ1ðCmÞ.

Clearly, Cmþ1;I ¼
SJm

C
j¼1r

mþ1;I
j , where rmþ1;I

j :¼ ~Xmþ1ðrm
j Þ; j ¼ 1! Jm

C . We will now define a finer triangulation
SJmþ1

C
j¼1 rmþ1

j , with

Jmþ1
C P Jm

C , for the same polyhedral surface Cm+1,q = Cm+1. To this end, we mark all elements rmþ1;I
j , that have become too

large due to the growth of the interface, for refinement. In particular, any element with jrmþ1;I
j j P 7

4 volmax is marked for
refinement. Then all refined elements are replaced with two smaller ones with the help of a simple bisectioning procedure.
Note that this bisection does not change the polyhedral surface Cm+1,q = Cm+1. Moreover, we note that in order to prevent
hanging nodes, in general more elements will be refined than have initially been marked for refinement. The cycle of mark-
ing and refining is repeated until no more refinements are required. In practice, this was always the case after just one such
refinement step.
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In conclusion we stress that the given parametric mesh adaptation algorithm means that Theorem 3.2 still holds. More-
over, apart from this simple mesh refinement, no other changes were performed on the parametric mesh in any of our sim-
ulations. In particular, no mesh smoothing (redistribution) was required.

6. Numerical results

For the numerical results in this paper, for simplicity, we restrict ourselves to the case of constant heat conductivity K.
The case of piecewise constant coefficients is numerically more involved, and this will be addressed in a forthcoming paper.
We refer to [4], see also [5], for a possible natural approach in this case.

Throughout this section we use (almost) uniform time steps; in that, sm = s, m = 0 ? M � 2, and sM�1 = T � tm�1 6 s.
Moreover, unless otherwise stated, we always employ (3.6)(iii), i.e. we integrate these cross terms exactly.

For later use, we define hm
C :¼maxj¼1!Jm

C
diamðrm

j Þ. We also define the errors k~X �~xkL1 :¼maxm¼1!Mk~Xm �~xð�; tmÞkL1 ,

where k~XðtmÞ �~xð�; tmÞkL1 :¼maxk¼1!Km
C
fmin~y2!j~Xmð~qm

k Þ �~xð~y; tmÞjg and kU � Ih ukL1 :¼maxm¼1!MkUm � Im uð�; tmÞkL1 .

6.1. Non-dimensionalization

In order to study the parameter dependence of the numerical simulations in a systematic way, a non-dimensionalization
of the Stefan problem is necessary. Introducing characteristic scales ~z;~t; ~u and ~f for space, time, temperature and heat
sources, we non-dimensionalize the variables as follows:
b~z ¼ ~z�1~z; bt ¼ ~t�1t; bu ¼ ~u�1u; bf ¼ ~f�1f :
Let the capillary length d0 be defined by d0 ¼ a # TM

k2 , which is an important length scale for solidification phenomena. Then let:
. :
qKTM

k2~z
and 1 :¼ d0

~z
¼ a#TM

k2~z

denote a dimensionless kinetic coefficient and a dimensionless capillary coefficient, respectively, where we recall the nota-
tion and scaling in (2.2), and where we assume that K is constant in X and that # > 0. Denoting by TD a typical temperature in
the problem, e.g. the temperature at the boundary, we obtain two important scalings for (2.1a)–(2.1e). It will turn out that in
both scalings the dimensionless undercooling S ¼ ðTM�TDÞ #

k , as well as the dimensionless capillary coefficient 1, will be impor-
tant parameters.

Scaling I: ~t ¼ # ~z2

K , ~u ¼ TM � TD;
~f ¼ K ~u

~z2 .
This scaling leads to (we drop theb in the rescaled variables):
ut � Du ¼ f in XsðtÞ [XlðtÞ;
ou
o~m

� �
CðtÞ
¼ �S�1V on CðtÞ; ð6:1aÞ

.
bð~mÞ V ¼ 1,c � Su on CðtÞ; ð6:1bÞ
ou
o~mX
¼ 0 on oNX; u ¼ �1 on oDX; Cð0Þ ¼ C0; uð�;0Þ ¼ u0 in X: ð6:1cÞ
For a given constant temperature at the boundary, a certain multiple of the Wulff shape is stationary, where the Wulff shape,
recall (2.5), is a region with a boundary such that ,c = �1, see [35]. Examining (6.1b) we observe that we have to scale the
Wulff shape by Rc ¼ 1

S in order to obtain a stationary shape. In the isotropic case Rc is called the critical nucleation radius and
it turns out that balls with a radius smaller than Rc shrink and larger ones grow. One observes that the critical nucleation
radius becomes smaller for large undercoolings and for small surface energy densities.

Scaling II: ~t ¼ ~z2 k
K ~u ; ~u ¼ TM � TD;

~f ¼ K ~u
~z2 .

The nondimensional equations are now (we again drop theb in the rescaled variables):
Sotu� Du ¼ f in XsðtÞ [XlðtÞ;
ou
o~m

� �
CðtÞ
¼ �V on CðtÞ; ð6:2aÞ

.
bð~mÞ V ¼

1
S ,c � u on CðtÞ; and ð6:1cÞ: ð6:2bÞ
For small undercoolings S, with 1
S still of order one, and in addition with .

bð~mÞ small, we can neglect the terms S otu in (6.2a) and
.

bð~mÞ V in (6.2b), and then obtain the Mullins–Sekerka problem:� �

� Du ¼ 0 in XsðtÞ [XlðtÞ;

ou
o~m CðtÞ

¼ �V on CðtÞ; ð6:3aÞ

0 ¼ 1
S ,c � u on CðtÞ; ð6:3bÞ

ou
o~mX
¼ 0 on oNX; u ¼ �1 on oDX; Cð0Þ ¼ C0: ð6:3cÞ
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All our reported numerical experiments will be for the rescaled problems (6.1a)–(6.1c), for the Stefan problem, and
(6.3a)–(6.3c), for the Mullins–Sekerka problem. Unless otherwise stated, we will use S ¼ 1, b = c, f = 0 and X = (�H,H)d with
H = 4. For computations for the Stefan problem (6.1a)–(6.1c) we will in general take 1 = 10�3, . = 10�2 and (2.7)(i), while for
the Mullins–Sekerka problem (6.3a)–(6.3c), we usually set 1 = 1 and take (2.7)(ii).

The initial interface C(0) is either a circle/sphere of radius R0 2 (0,H) around the origin, or a (perturbed) straight horizon-
tal line in R2, with endpoints attached to oX. For the Stefan problem (6.1a)–(6.1c), in the former case, we set:
u0ð~zÞ ¼
0 j~zj 6 R0;

� 1�eR0�j~zj

1�eR0�H R0 < j~zj < H;

�1 j~zj P H;

8><>:

while for a straight line at height z2 = H0 2 (�H,H), we set:
u0ð~zÞ ¼
0 z2 6 H0;

� 1�eH0�z2

1�eH0�H H0 < z2 < H;

�1 z2 P H;

8><>:

unless a true solution u is given.

6.2. Planar Mullins–Sekerka instability

As mentioned in Section 1, the instability of a straight planar interface in the presence of undercooling was first analysed
in [46]. Here we numerically investigate this instability for a straight line in R2. In this context we refer to [57], where the
stability of a flat interface for a semidiscrete, quasi-stationary variant of the Stefan problem was studied. For the numerical
investigations in this section, we let C(0) be a straight horizontal line at height z2 = �3 within the domain X = (�4,4)2, i.e.
H = 4. The liquid phase is undercooled from the upper boundary, so that oDX = [�4,4] � {4}, which corresponds to
(2.7)(iii). Clearly, for the given setup an exact solution can be computed, which is given by the interface moving unchanged
through the domain towards the upper boundary. However, this solution is unstable. In order to investigate this instability,
we perturb the initial interface C(0) slightly with the following perturbation. Let:
fð~zÞ ¼
X30

j¼1

dj cos
jp
4

z1

� �
; ð6:4Þ
where jdjj 6 0.01 are some randomly chosen values. Then we add this perturbation to the straight interface, i.e. C(0) is re-
placed by Cð0Þ þ fðCð0ÞÞ~e2. As (6.4) is clearly an even function with respect to the z1-coordinate, the evolution will be sym-
metric with respect to the z2-axis throughout. If the numerical results also show this symmetry, then this will be a strong
indication that all of the observed instabilities, such as fingering and sidebranching, are due to the chosen perturbation
(6.4) only, and are unlikely to be caused by numerical noise.

In the following experiments for (6.1a)–(6.1c), for an isotropic surface energy (2.3), we vary 1 and keep all the other
parameters fixed as previously described. The discretization parameters are Nf = 4096, Nc = 256, s = 10�4 and K0

C ¼ 4097.
See Fig. 6 for the different evolutions for 1 = 5 � 10�3, 2 � 10�3 and 10�3, where in all of the computations we observe
the expected symmetry. We note that each computation was stopped when the discrete interface no longer remained en-
tirely in X. Moreover, in Fig. 7 we show the results for the same experiments but now for S ¼ 5

4, which has an immediate
and noticeable effect on the evolution as T is much smaller.

The same experiments, for the anisotropy c as in the middle of Fig. 2, can be seen in Figs. 8 and 9. We observe that for both
sets of experiments, the instability becomes stronger for smaller values of 1, and for larger values of S. In particular, we ob-
serve that for 1 getting smaller, the fastest growing modes represented in the initial data become more and more oscillatory.
Moreover, as expected, the branching in the anisotropic setting in Fig. 8 is clearly aligned with the coordinate axes, while in
the isotropic case there is no clear preferred growth direction.

6.3. Convergence experiment for the Stefan problem

We start with a comparison of our algorithm (3.5a)–(3.5c) for a known exact solution to the Stefan problem (6.1a)–(6.1c)
in the case of an isotropic surface energy (2.3). Here we use the expanding circle/sphere solution introduced in [51, pp. 303–
304], where the radius of the circle/sphere is given by r(t). Assume that 1 = . and let:
rðtÞ ¼ ðr2ð0Þ þ tÞ
1
2; wðtÞ ¼ �

1ðd� 1
2Þ

rðtÞ ; vðsÞ ¼ � e
1
4

2

Z s

1

e�
1
4z2

zd�1 dz:
Then it is easy to see that on letting:
f ð~z; tÞ ¼ d
dt

wðtÞ ¼
1ðd� 1

2Þ
2r3ðtÞ ;



Fig. 6. ~XðtÞ at times t ¼ 0;0:01; . . . ; T with T ¼ 2:21;1:63;1:29 for S ¼ 1 and 1 = 5 � 10�3, 2 � 10�3, 10�3, respectively.

Fig. 7. ~XðtÞ at times t ¼ 0;0:01; . . . ; T with T ¼ 0:88;0:59;0:52 for S ¼ 5
4 and 1 = 5 � 10�3, 2 � 10�3, 10�3, respectively.

Fig. 8. ~XðtÞ at times t ¼ 0;0:01; . . . ; T with T ¼ 1:42;0:85;0:63 for S ¼ 1 and 1 = 5 � 10�3, 2 � 10�3, 10�3, respectively.
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the solution u to (6.1a)–(6.1c), with uD in (6.1b) replaced by ujoDX, is given by
uð~z; tÞ ¼
wðtÞ j~zj 6 rðtÞ;
wðtÞ þ v j~zj

rðtÞ

� �
j~zj > rðtÞ:

(
ð6:5Þ
For d = 2, we perform the following convergence experiment for the solution (6.5), where we set 1 = . = 10�3 and use
r(0) = R0 = 0.5. For i = 0 ? 4, we set Nf ¼ 2K0

C ¼ 27þi, Nc = 4i and s = 43�i � 10�3. The errors kU � Ih ukL1 and k~X �~xkL1 on
the interval ½0; T� with T ¼ 1, so that rðTÞ � 1:12, are displayed in Table 1. Note that KM

C ¼ 2K0
C due to the growth of the

interface.



Fig. 9. ~XðtÞ at times t ¼ 0;0:01; . . . ; T with T ¼ 0:63;0:42;0:3 for S ¼ 5
4 and 1 = 5 � 10�3, 2 � 10�3, 10�3, respectively.
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In addition, we use the convergence experiment in order to compare the different integration rules for the cross terms
(3.6). See Table 2, where we present the same computations as in Table 1, but now for (3.6)(i) and (ii). As is to be expected,
the errors for the vertex sampling (3.6)(i) are larger than for the other two quadrature rules (ii) and (iii), while the latter two
methods produce very similar errors.

Similarly to Table 1, we perform a convergence test for the solution (6.5), now for d = 3, leaving all the remaining param-
eters fixed as before. To this end, for i = 0 ? 3, we set Nf ¼ 26þi;Nc ¼ 4i;K0

C ¼ KðiÞ, where (K(0), K(1), K(2), K(3)) = (770, 3074,
12290, 49154), and s = 43�i � 10�3. The errors kU � Ih ukL1 and k~X �~xkL1 on the interval ½0; T� with T ¼ 0:1, so that
rðTÞ � 0:59, are displayed in Table 3. Here KM

C ¼ K0
C, as the interface has not grown sufficiently to merit a refinement as de-

scribed in Section 5.2.

6.4. 2d results for the Stefan problem

In this subsection we use X = (�8,8)2 and set S ¼ 1
2 ; 1 ¼ 5� 10�4;. ¼ 10�2, unless otherwise stated. The initial interface is

given by a circle of radius R0 = 0.05.
For the anisotropy on the left of Fig. 2, we perform the following simulations, which highlight possible mesh effects that

can be caused by numerical noise. Here we use three sets of discretization parameters. Let Nf ¼ 29þi; Nc ¼ 25þi; K0
C ¼ 24þi

and s = 21�2i � 10�3, i = 0?2. The results are shown in Fig. 10, which indicate that the side branching observed in the exper-
iment with the coarsest discretization parameters is simply due to numerical noise.

We repeat the experiments in Fig. 10 for the sixfold anisotropy on the right of Fig. 2. The results are shown in Fig. 11,
where once again we observe that the sidebranching disappears once the discretization parameters are chosen fine enough.
In summary we note that the sidebranching observed in Figs. 10 and 11 is caused by numerical noise, which is then amplified
Table 1
X = (�4,4)2 and T ¼ 1. Convergence test for (6.5) with (3.6)(iii).

hf hM
C kU � Ih ukL1 k~X �~xkL1 KM

X KM
C

6.2500e�02 6.0083e�02 6.7004e�02 1.2155e�01 749 128
3.1250e�02 2.8906e�02 2.8054e�02 6.6655e�02 1321 256
1.5625e�02 1.4375e�02 1.4997e�02 3.2719e�02 2909 512
7.8125e�03 7.0224e�03 4.8878e�03 1.0036e�02 8945 1024
3.9062e�03 3.4677e�03 1.6308e�03 2.3839e�03 74597 2048

Table 2
X = (�4,4)2 and T ¼ 1. Convergence test for (6.5) with (3.6)(i) and (ii).

hf (3.6)(i) (3.6)(ii)

kU � Ih ukL1 k~X �~xkL1 kU � Ih ukL1 k~X �~xkL1

6.2500e�02 6.6844e�02 1.2505e�01 6.7038e�02 1.2733e�01
3.1250e�02 3.2438e�02 8.4950e�02 2.7908e�02 6.6561e�02
1.5625e�02 1.6191e�02 3.8031e�02 1.4995e�02 3.2526e�02
7.8125e�03 5.1953e�03 1.0749e�02 4.8702e�03 9.9904e�03
3.9062e�03 1.6902e�03 2.5142e�03 1.6310e�03 2.3741e�03



Table 3
X = (�4,4)3 and T ¼ 0:1. Convergence test for (6.5) with (3.6)(iii).

hf hM
C kU � Ih ukL1 k~X �~xkL1 KM

X KM
C

1.2500e�01 1.2341e�01 5.8883e�02 3.2225e�02 1781 770
6.2500e�02 6.2306e�02 1.7987e�02 1.5276e�02 6313 3074
3.1250e�02 3.1290e�02 9.0387e�03 8.1044e�03 26437 12290
1.5625e�02 1.5629e�02 5.3492e�03 4.1915e�03 358245 49154
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due to the instability considered in Section 6.2. In situations where the modelling of sidebranching is important and desired,
sidebranching can easily be achieved by adding random fluctuations to the model. This can be done e.g. for the temperature
field, for the Gibbs–Thomson law or directly for the interface approximation itself. We give an example for the latter ap-
proach in Fig. 12. For the anisotropy as in Fig. 10 and on the larger domain X = (�16,16)2, we choose S ¼ 1

2 ; 1 ¼ 10�3 and
. = 10�2. The discretization parameters are Nf = 4096, Nc = 256, s = 1.25 � 10�4 and K0

C ¼ 64. The first plot in Fig. 12 shows
the smooth growth of four main dendritic arms. When some random noise of maximal magnitude 0.02 is added to the dis-
crete interface Cm at time t = 4, this new evolution shows a pronounced sidebranching at later times.

6.5. 3d results for the Stefan problem

In this subsection, we let X ¼ ð�4;4Þ3;S ¼ 1
2, 1 = 10�3, . = 10�2 and let C(0) be given by a sphere with radius R0 = 0.1, un-

less otherwise stated.
The first experiment is for the anisotropy on the right of Fig. 3, but here with e = 0.6. This anisotropy has what is some-

times called a cubic symmetry, and this will lead to the growth of dendrites with six main branches. First, similarly to Fig. 10,
we numerically investigate the possible effects of rounding errors. To this end, we perform the following set of experiments.
Let Nf ¼ 27þi; Nc ¼ 23þi; J0

C ¼ 3� 26þi and s = 25�2i � 10�4, i = 0?2. The results are shown in Fig. 13. Once again we observe
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Fig. 10. ~XðtÞ for t ¼ 0;0:5; . . . ; T with T ¼ 2:5;3;3. Parameters are Nf ¼ 29þi;Nc ¼ 25þi;K0
C ¼ 24þi and s = 21�2i � 10�3, i = 0?2.
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Fig. 11. ~XðtÞ for t = 0,0.5, . . . ,4. Parameters are Nf ¼ 29þi;Nc ¼ 25þi;K0
C ¼ 24þi and s = 21�2i � 10�3, i = 0?2.
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Fig. 12. ~XðtÞ for t = 0,0.5, . . . ,9. On the right the same evolution with random noise added to ~Xð4Þ.

Fig. 13. ~Xð0:25Þ for the following sets of parameters: Nf ¼ 27þi;Nc ¼ 23þi; J0
C ¼ 3� 26þi and s = 25�2i � 10�4, i = 0?2.

J.W. Barrett et al. / Journal of Computational Physics 229 (2010) 6270–6299 6291
that the oscillations and secondary sidebranching observed in the experiment for the coarsest set of discretization param-
eters is caused by numerical noise. The oscillations disappear once the discretization parameters are chosen sufficiently fine.
More details of the finest computation in Fig. 13 are shown in Fig. 14. Here we observe the well-known growth from a spher-
ical seed to a dendrite with six symmetric branches.

For the hexagonal anisotropy, as shown on the left of Fig. 3, we have the following results. We remark that such an anisot-
ropy is understood to be the main driving force for the growth of snow crystals. Hence the numerical results presented here
can be used to simulate such growth when we interpret (2.1a)–(2.1e) as a model for solidification from a supersaturated
solution. See [40, Fig. 2] for a diagram on the different types of snow flakes.

For later use, we define the mobility:
bflatð~pÞ :¼ p2
1 þ p2

2 þ dp2
3

� 	1
2 ð6:6Þ
with d = 10�4. An experiment where initially we see ‘‘solid plates’’, recall [40, Fig. 2], is shown in Fig. 15. Here we used the
anisotropy on the left of Fig. 3, but for this experiment set e = 10�2 in order to produce sharper polyhedrons. We also have
Fig. 14. ~XðtÞ at times t = 0.1, 0.2, 0.25, 0.3, 0.34.



Fig. 15. ~XðtÞ for t = 0.2, 0.3, 0.4, 0.5, 0.6. 1 = 2 � 10�3, . = 10�2.

Fig. 16. ~XðtÞ for t = 0.1, 0.2, 0.3, 0.4 for b = btall.
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b = bflat and here 1 = 2 � 10�3. The discretization parameters are Nf = 128, Nc = 16, s = 10�3 and K0
C ¼ 98. We observe that the

corners of the solid plates soon become sharper and then develop something resembling ‘‘sectored plates’’; see [40, Fig. 2].
Next we tried to produce the ‘‘hollow columns’’ from [40, Fig. 2]. To this end, we set b = btall, where
btallð~pÞ :¼ ½dp2
1 þ dp2

2 þ p2
3�

1
2

with d = 0.01, and let 1 = 10�3. The anisotropy c is chosen as on the left of Fig. 3, while the discretization parameters are as
before. The evolution of the interface for this experiment can be seen in Fig. 16, where we can observe the expected growth.

The next run is on the larger domain X = (�8,8)3 and an initial sphere with radius R0 = 0.05. The discretization parameters
are Nf = 256, Nc = 32, s = 5 � 10�4 and K0

C ¼ 98. The anisotropy c is as on the left of Fig. 3. A run for b = cbflat, and the latter
defined by (6.6) with d = 10�2, is shown in Fig. 17, where the upper and lower parts start to overgrow at around time t = 0.23.
The shapes shown in Fig. 17 come very close to resembling real snow flakes. Here it should be noted, that the sidebranching
observed there is very likely caused by numerical noise and rounding errors. However, the same effect, on even the most
refined meshes, can be achieved by adding random fluctuations to the model, as discussed previously. In real life, such fluc-
tuations and changes in physical parameters are experienced by the growing snow flake, as it moves through the atmosphere
towards the earth.

Many mechanisms in snow crystal growth are still not fully understood. Experimentally it is observed that in a growing
hexagonal prism sometimes the upper and lower basal facets break, while at other times the prism facets break, see e.g. [33]
and [32]. Both scenarios are observed in our numerical experiments, see Figs. 16 and 17. Further numerical experiments are
needed to obtain a better understanding of the governing mechanisms for facet breaking.
6.6. Convergence experiment for Mullins–Sekerka

Here we perform test computations for a well-known analytic solutions for the two phase Mullins–Sekerka problem
(6.3a)–(6.3c) in the case of an isotropic surface energy (2.3). Here S ¼ 1 ¼ 1 with oNX = oX. In addition, C(0) consists of
two concentric spheres. It is then not difficult to show, that the two radii r1 < r2 satisfy the following system of nonlinear
ODEs: In the case d = 2 we have:
Fig. 17. ~XðtÞ for t = 0.15, 0.22, 0.26 for b = cbflat, d = 0.01.



Table 4
X = (�

hf

6.25
3.12
1.56
7.81

J.W. Barrett et al. / Journal of Computational Physics 229 (2010) 6270–6299 6293
½r1�t ¼ �
1
r1

1
r1
þ 1

r2

ln r2
r1

and ½r2�t ¼ �
1
r2

1
r1
þ 1

r2

ln r2
r1

¼ r1

r2
½r1�t 8 t 2 ½0; T0Þ; ð6:7aÞ
while for d = 3 it holds that:
½r1�t ¼ �
2
r2

1

r1 þ r2

r2 � r1
and ½r2�t ¼ �

2
r2

2

r1 þ r2

r2 � r1
¼ r2

1

r2
2

½r1�t 8 t 2 ½0; T0Þ; ð6:7bÞ
where T0 is the extinction time of the smaller sphere, i.e. limt!T0
r1ðtÞ ¼ 0, see e.g. [14] and [56], where we note that our def-

inition of the mean curvature ,c 	 , leads to a factor 2 in (6.7b) compared to [56]. Note that the corresponding solution u
satisfying (2.1a)–(2.1e) is given by the radially symmetric function:
uð~z; tÞ ¼

� d�1
r2ðtÞ

j~zj P r2ðtÞ;

1
r1ðtÞ
� ln j~zj

r1ðtÞ

1
r1 ðtÞ
þ 1

r2 ðtÞ

ln
r2ðtÞ
r1ðtÞ

d ¼ 2;

� 4
r2ðtÞ�r1ðtÞ

þ 2
j~zj

r1ðtÞþr2ðtÞ
r2ðtÞ�r1ðtÞ

d ¼ 3;

8><>: r1ðtÞ 6 j~zj 6 r2ðtÞ;

d�1
r1ðtÞ

j~zj 6 r1ðtÞ:

8>>>>>>><>>>>>>>:
ð6:8Þ
It is easy to see from (6.8) that the normal velocity of C is given by
VjCi
¼

ð�1Þiþ1 1
ri

1
r1
þ 1

r2

ln
r2
r1

d ¼ 2;

ð�1Þiþ1 2
r2

i

r1þr2
r2�r1

d ¼ 3;

8><>: i ¼ 1;2:
As (6.7a), (6.7b) does not appear to be analytically solvable, it needs to be integrated numerically to compute the solution
(r1, r2)(t), for t 2 ½0; T�, where T < T0. We note that as the enclosed volume is conserved, recall (2.14), it holds that:
M�1
d volðXsðtÞÞ ¼ rd

2ðtÞ � rd
1ðtÞ ¼ rd

2ð0Þ � rd
1ð0Þ ¼: v0 8 t P 0;
where M2 = p and M3 ¼ 4
3 p, and hence r2ðtÞ ¼ ðv0 þ rd

1ðtÞÞ
1
d. Altogether this yields the scalar ODE:
½r1�t ¼

� 1
r1

1
r1
þ v0þr2

1ð Þ�
1
2

ln
v0þr2

1ð Þ
1
2

r1

d ¼ 2;

� 2
r2

1

r1þ v0þr3
1ð Þ

1
3

v0þr3
1ð Þ

1
3�r1

d ¼ 3;

8>>>>><>>>>>:
8 t 2 ½0; T0Þ: ð6:9Þ
One possibility is to integrate (6.7a), (6.7b) directly, with e.g. a Runge–Kutta scheme. However, as we need to evaluate
r1(t) very accurately, we employ the following approach. It follows from (6.9) that:
0 ¼ t þ

R r1ðtÞ
r1ð0Þ

r ln
v0þr2ð Þ

1
2

r

1
rþ v0þr2ð Þ�

1
2

dr d ¼ 2;

R r1ðtÞ
r1ð0Þ

r2

2
v0þr3ð Þ

1
3�r

rþ v0þr3ð Þ
1
3

dr d ¼ 3;

8>>>>><>>>>>:
8 t 2 ½0; T0Þ: ð6:10Þ
Now a simple root finding algorithm can be used to find r1(t) solving (6.10), and we employ the secant method. Here the
integrals in (6.10) are evaluated using the Romberg method.

For the initial radii r1(0) = 2, r2(0) = 3 and the time interval ½0; T� with T ¼ 1, so that r1ðTÞ � 0:69 and r2ðTÞ � 2:34, we per-
formed a convergence experiment for the true solution (6.8), at first for d = 2. To this end, for i = 0 ? 4, we set
Nf ¼ 1

2 K0
C ¼ 27þi; Nc ¼ 4i and s = 43�i � 10�3. The errors kU � Ih ukL1 and k~X �~xkL1 on the interval ½0; T� with T ¼ 1 are dis-

played in Table 4. Note that, because the two circles are shrinking, it holds that KM
C ¼ K0

C. In addition, we repeat the same
convergence experiment for the two other integration rules for the cross terms in (3.6). See Table 5, where we present
4,4)2 and T ¼ 1. Convergence test for (6.8) with (3.6)(iii).

hM
C kU � Ih ukL1 k~X �~xkL1 KM

X KM
C

00e�02 1.1539e�01 3.3312e�01 7.8506e�02 2173 256
50e�02 5.7439e�02 1.2935e�01 1.2009e�02 3841 512
25e�02 2.8694e�02 1.8813e�02 6.2882e�03 7341 1024
25e�03 1.4354e�02 4.6795e�03 4.7455e�03 17201 2048



Table 5
X = (�4,4)2 and T ¼ 1. Convergence test for (6.8) with (3.6)(i) and (ii).

hf (3.6)(i) (3.6)(ii)

kU � Ih ukL1 k~X �~xkL1 kU � Ih ukL1 k~X �~xkL1

6.2500e�02 3.3802e�01 8.3705e�02 3.3312e�01 7.8507e�02
3.1250e�02 1.3288e�01 1.4938e�02 1.2935e�01 1.2009e�02
1.5625e�02 2.2092e�02 4.6987e�03 1.8812e�02 6.2882e�03
7.8125e�03 3.1831e�03 3.9429e�03 4.6796e�03 4.7455e�03

Table 6
X = (�4,4)3 and T ¼ 0:1. Convergence test for (6.8) and (3.6)(iii).

hf hM
C kU � Ih ukL1 k~X �~xkL1 KM

X KM
C

2.5000e�01 6.0187e�01 3.0964e�01 2.0736e�02 11151 1540
1.2500e�01 3.0249e�01 1.1705e�01 1.1644e�02 44145 6148
6.2500e�02 1.5152e�01 4.8849e�02 6.8054e�03 175465 24580
3.1250e�02 7.5809e�02 2.1904e�02 3.5880e�03 900169 98308
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the same computations as in Table 4, but now for (3.6)(i) and (ii). Here no clear conclusion is possible, apart from the fact that
the errors for (3.6)(ii) and (iii) are very similar.

Similarly to Table 4, for the initial radii r1(0) = 2, r2(0) = 3 and the time interval ½0; T�with T ¼ 0:1, so that r1ðTÞ � 1:74 and
r2ðTÞ � 2:90, we performed a convergence experiment for the true solution (6.8) for d = 3. To this end, for i = 0 ? 3, we set
Nf = 25 + i, Nc = 4i, 1

2 K0
C ¼ KðiÞ, where (K(0), K(1), K(2), K(3)) = (770, 3074, 12290, 49154), and s = 43�i � 10�3. The errors

kU � Ih ukL1 and k~X �~xkL1 on the interval ½0; T� with T ¼ 0:1 are displayed in Table 6.

6.7. 2d results for Mullins–Sekerka

Similarly to the numerical simulations shown in [62], we present some results for growing and shrinking circular parti-
cles, at first for an isotropic surface energy, (2.3). For the simulation in Fig. 18, we let C(0) be the union of three circles with
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Fig. 18. ~XðtÞ at times t ¼ 0; t ¼ 0;0:1; . . . ; T ¼ 2 and t ¼ T . On the right a plot of (6.11), i.e. jCmj.
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Fig. 19. ~XðtÞ at times t ¼ 0; t ¼ 0;0:1; . . . ; T ¼ 2 and t ¼ T. On the right a plot of (6.11).
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Fig. 20. ~XðtÞ at times t ¼ 0;0:3; . . . ; T ¼ 1:2. On the right, a plot of (6.11), i.e. jCmj.
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radii 0.6, 0.8 and 0.9. Under the Mullins–Sekerka flow, the two smaller circles shrink in size until they vanish, while the larger
circle grows accordingly. Here we recall from (2.14) that the overall area/volume enclosed by C is conserved. Recall also that
a single circular interface is a steady state solution. The shrinking and disappearing of the two smaller circles can clearly be
seen in the plot of the discrete energy:
bEm ~Xm
� �

:¼ 1jCmjc; with 1 ¼ 1; ð6:11Þ
over time, which is also given in Fig. 18. The discretization parameters for this experiment are Nf = 128, Nc = 16,
s ¼ 10�3; T ¼ 2 and K0

C ¼ 768. We remark for the reader that a parametric approach cannot handle the vanishing of one
of the particles, as this represents a singularity. Hence, for practical purposes, we discard a closed surface from the compu-
tations once its enclosed area/volume is smaller than 10�6. The same simulation, but now with the anisotropic surface en-
ergy c as on the right of Fig. 2, can be seen in Fig. 19.
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Fig. 21. ~XðtÞ at times t ¼ 0:05;0:150:3;0:45; T ¼ 0:6. On the right, a plot of (6.11).



Fig. 22. ~XðtÞ at times t ¼ 0;0:1; . . . ; T ¼ 0:4.

6296 J.W. Barrett et al. / Journal of Computational Physics 229 (2010) 6270–6299
6.8. 3d results for Mullins–Sekerka

Similarly to Fig. 18, we present some results for growing and shrinking particles, at first for an isotropic surface energy,
(2.3). For the simulation in Fig. 20, we let C(0) be the union of three spheres with radii 0.9, 1.1 and 1.2. As is to be expected,
under the Mullins–Sekerka flow, the two smaller spheres shrink in size until they vanish, while the larger sphere grows
accordingly. The shrinking and disappearing of the two smaller spheres can clearly be seen in the plot of the discrete energy
(6.11) over time, which is also given in Fig. 20. The discretization parameters for this experiment are Nf ¼ 128;Nc ¼
16; s ¼ 10�3; T ¼ 0:4 and K0

C ¼ 2822. The same evolution, but now for the anisotropic surface energy c as shown on the left
of Fig. 3, can be seen in Fig. 21. Here we observe that the three particles soon adopt a shape aligned with the Wulff shape of c,
before they shrink and expand similarly to the evolution in Fig. 20.

Finally, we also provide an evolution, in which an initially convex interface loses its convexity under the Mullins–Sekerka
flow for an isotropic energy (2.3). Here we recall that the existence of such evolutions in the case d = 2 has been shown in
[43]. In the experiment shown in Fig. 22, the initial surface C(0) has total dimensions 6 � 1 � 1. The discretization param-
eters for this computation are Nf = 64, Nc = 8, s ¼ 10�3; T ¼ 0:4 and K0

C ¼ 358. We observe that during the evolution the inter-
face becomes nonconvex, before reaching a spherical steady state.
Appendix A. Discretizations for the Mullins–Sekerka problem as gradient flows

The Mullins–Sekerka problem with Neumann boundary conditions, i.e. problem (2.1a)–(2.1e) with:
# ¼ q ¼ f ¼ 0; ðA:1aÞ
and (2.7)(ii), can be interpreted as a gradient flow for the surface energy jCjc. For simplicity we will, in this Appendix A, con-
sider an isotropic surface energy (2.3) and set:
b ¼ K ¼ k ¼ a ¼ a ¼ 1: ðA:1bÞ
But we note that several generalizations are straightforward. We also refer to [44], where a gradient flow structure was
used to derive discretizations of the Mullins–Sekerka problem in a way which is different to our approach.
A.1. The continuous gradient flow

In order to define a gradient flow one needs to introduce an inner product. For the Mullins–Sekerka problem one has to
use a (volume based) H�1-inner product in contrast to the H�1-inner product on the surface C itself. Here we recall that the
latter inner product gives rise to the well-known gradient flow called surface diffusion, see e.g. [17] and [10]. For the smooth
reference manifold ! and a given constant V0, we define:
M :¼ ~z 2 C1ð!;RdÞ :~zð!Þ � X encloses a set with volume V0

n o
:

Let~x 2M and let C :¼~xð!Þ. Possible variations~x : C� ð�e0; e0Þ ! Rd of C with~xð0Þ ¼ ~id that maintain the enclosed vol-
ume fulfil

R
C oe~xð0Þ �~m ds ¼ 0. Hence we obtain that:
T~xM :¼ ~g : C! Rd :

Z
C

~g �~m ds ¼ 0
� �

;

as the tangent space ofM. For later use we define the first variation of jCj in the direction ~g 2 T~xM. Therefore we choose a
family of surfaces parameterized by~x : C� ð�e0; e0Þ ! Rd; e0 > 0, such that~xð0Þ ¼ ~id, oe~xð0Þ ¼ ~g and set:
d jCð0Þj½ �ð~gÞ ¼ d
de
jCðeÞjje¼0 with CðeÞ :¼~xðC; eÞ:
For all ~g;~n 2 T~xM we define the H�1-inner product:
h~g;~ni�1 :¼ ru~g;ru~n
� �

; ðA:2Þ
where u~g 2 H1ðXÞ is defined such that:
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ðru~g;r/Þ ¼
Z

C

~g �~m/ ds 8 / 2 H1ðXÞ;
and similarly for u~n 2 H1ðXÞ. Existence of u~g and u~n follows because the solvability condition
R

C
~g �~m ds ¼ 0 holds. We remark

that u~g and u~n are only unique up to an additive constant, but since only gradients enter into the definition of h � , � i�1, the
inner product (A.2) is well-defined. In addition, we observe that:
h~g;~ni�1 ¼
Z

C
ð~g �~mÞu~n ds ¼

Z
C

u~gð~n �~mÞ ds:
It is easy to see that the inner product h � , � i�1 is symmetric, bilinear and positive semi-definite. A solution (C(t))tP0 to the
H�1-gradient flow equation for jCj is now given as a solution of:
d½jCðtÞj�ð~gÞ ¼ � ~xt;~gh i�1; ðA:3Þ
which has to hold for all ~g 2 T~xM, where ~xðtÞ, as usual, parameterizes C(t).
The definition (A.3) can be rewritten as
rs~x;rs~gh i ¼ �
Z

CðtÞ
u~g �~m ds 8 ~g 2 T~xM; ðA:4aÞ
where we recall the definition (2.10) and (2.12), and where u 2 H1(X) is such that:
ðru;r/Þ ¼
Z

CðtÞ
~xt �~m/ ds 8 / 2 H1ðXÞ: ðA:4bÞ
As discussed above, the function u is only defined up to a constant. Requiring that (A.4a) holds for all~g : C! Rd fixes this
constant without altering the evolving surfaces (C(t))tP0, and hence we observe that (A.4a), (A.4b) and (2.8a)–(2.8c), with the
assumptions stated in (A.1a), (A.1b), have the same solutions (C(t))tP0.
A.2. The spatially discrete gradient flow

We now approximate ! by a polyhedral surface !h and define:
Mh :¼ ~v 2 Vð!hÞ : ~vð!hÞ � X encloses a set with volume V0

n o
:

Let ~X 2Mh and let Ch :¼ ~Xð!hÞ. Then we define:
T~XM
h :¼ ~g 2 VðChÞ :

Z
Ch
~g �~mh ds ¼ 0

� �
;

where ~mh is a unit normal to Ch.
Introducing a finite element space S as in Remark 3.5, we can then define a discrete inner product for ~g;~n 2 T~XM

h by
~g;~n
D Eh

�1;h
:¼ ruh

~g;ruh
~n

� �
;

where uh
~g 2 S, and analogously uh

~n
2 S, are defined via:
ruh
~g;ru

� �
¼ ph ~g � ~xh

� 	
;u


 �}
h 8 u 2 S;
where the discrete vertex normal ~xh and the interpolation operator ph are defined as in Remark 3.5. On recalling (3.15) we
note that hph½~g � ~xh�;1i}h ¼

R
Ch ~g �~mh ds ¼ 0, which implies that (up to a constant) uh

~g and uh
~n

are well-defined. The discrete gra-
dient flow equation is now given as
rs
~X;rs~g

D E
h
¼ � U;ph ~g � ~xh

� 	
 �}
h 8 ~g 2 T~XM

h; ðA:5aÞ
where U 2 S is defined by
rU;ruð Þ ¼ ph ~Xt � ~xh
h i

;u
D E}

h
8 u 2 S; ðA:5bÞ
and where ~XðtÞ, as in Remark 3.5, parameterizes Ch(t). If we require that (A.5a) holds for all test functions ~g 2 VðChÞ, we ob-
tain that U 2 S is unique. We remark that, for the stated choice of parameters (A.1a), (A.1b), the formulation (A.5a), (A.5b) is
then equivalent to (3.14a)–(3.14c).
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A.3. The fully discrete gradient flow

We now obtain our fully discrete scheme (3.5a)–(3.5c), for the choice of parameters (A.1a), (A.1b), if in (A.5a), (A.5b) we

replace h�; �ið}Þh by h�; �ið}Þm ,~X by~Xmþ1;U by Um+1, ~xh by ~xm;ph by pm and~Xt by ~Xmþ1�~Xm

sm
. In particular, given C0, for m = 0 ? M � 1,

find Um+1 2 Sm and ~Xmþ1 2 VðCmÞ such that:
rUmþ1;ru
� �

¼ pm
~Xmþ1 �~Xm

sm
� ~xm

" #
;u

* +}
m

8 u 2 Sm; ðA:6aÞ

rs
~Xmþ1;rs~g

D E
m
¼ � Umþ1;pm ~g � ~xm½ �

D E}
m
8 ~g 2 V Cmð Þ: ðA:6bÞ
However, for the fully practical, semi-implicit approximation (A.6a), (A.6b) it does not appear possible to derive a gradient
flow representation for the energy jCj in a straightforward manner.

Hence we will first derive a gradient flow structure for the less practical, implicit and fully discrete scheme that is ob-
tained by replacing h � , � im on the left-hand side of (A.6b) with h � , � im+1. In a second step, we will show a gradient flow rep-
resentation of (A.6a), (A.6b) for a quadratic approximation of the energy jCj.

To this end, we define a discrete inner product for ~g;~n 2 V0ðCmÞ :¼ f~g 2 VðCmÞ : h~g;~mmim ¼ 0g by
~g;~n
D Eh

�1;m
:¼ rUm

~g ;rUm
~n

� �
; ðA:7Þ
where Um
~g 2 S, and analogously Um

~n 2 S, are defined via:
ðrUm
~g ;ruÞ ¼ pm ~g � ~xm½ �;uh i}m 8 u 2 S:
We note that hpm½~g � ~xm�;1i}m ¼ h~g;~mmim ¼ 0, which implies that (up to a constant) Um
~g and Um

~n are well-defined. In addi-
tion, we introduce the norm k � k�1;m;h ¼ ½h�; �i

h
�1;m�

1
2 induced by the H�1-inner product (A.7) on Cm.

Then the implicit version of (A.6a), (A.6b) can be rewritten as the following minimization problem:
~Xmþ1 2 arg min
~X2VðCmÞ

j~XðCmÞj þ 1
2sm
kð~X �~XmÞ � ~xmk2

�1;m;h

� �
:

Our semi-implicit approximation (A.6a), (A.6b), on the other hand, can be rewritten as the following minimization
problem:
~Xmþ1 2 arg min
~X2VðCmÞ

1
2

Z
Cm
jrs

~Xj2 dsþ 1
2sm
kð~X �~XmÞ � ~xmk2

�1;m;h

� �
:

Here we have made use of the quadratic approximation 1
2

R
Cm jrs

~Xj2 ds of the energy j~XðCmÞj, which for d = 3 is motivated
by [8, Lemma 2.1] and which for d = 2 can be shown to be valid in a straightforward fashion. Finally, we stress that despite
this substitution for the free energy term, the resulting scheme (A.6a), (A.6b) still mimics many features of the original gra-
dient flow; e.g. it monotonically decreases the discrete free energy jCmj, recall Theorem 3.2.
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